Design of a Numerical Sensor Concept as the Basis of a Hybrid Digital Twin for Monitoring Load-Bearing Glass Façades

Authors

  • Nathalie Nießer Universität der Bundeswehr München
  • Geralt Siebert

DOI:

https://doi.org/10.47982/cgc.9.519

Abstract

Recently, increased efforts have been made to explore the possibility of using glass panes as structural components, such as shear stiffeners. However, there are obstacles to the widespread use of these panes, even though they have proven their load-bearing capacity in structural systems (Haese 2013). The sudden failure of individual glass panes is a major concern because it can affect the overall structural safety. To better understand the causes of this unpredictable behaviour of glass façades, a numerical and physical sensor concept in the form of a hybrid digital twin will be developed. This involves both measurements of real load-bearing systems and simulations using numerical sensors. The two concepts will initially be developed independently, whereby the virtual model is approximated in a continuous process using measurements of the real structure. For this idea of the hybrid digital twin, a numerical sensor model is first presented in this article, which is also used for the evaluation of real sensors and thus serves as a basis for further investigation. The research project on the safety of glass façades in load-bearing structures is an important step towards improving the reliability and durability of such structures. The introduction of a hybrid digital twin will contribute to the development of an improved safety concept and the further establishment of these applications.

Published

2024-06-16

Issue

Section

Experimental & Numerical Investigations