A Simplified Design Method for All-Glass Balustrades

Authors

  • Thomas Spyra Ingenieurbüro Dr. Siebert
  • Tobias Herrmann Ingenieurbüro Dr. Siebert

DOI:

https://doi.org/10.7480/cgc.6.2186

Downloads

Abstract

An all-glass balustrade’s continuous handrail enables a horizontal load transfer from more flexible glass panes into adjacent elements with higher stiffness and thereafter – as the case may be – into even more rigid parts of the structure. As all the glass units are interconnected thus supporting each other mutually, a safe and economic design either requires taking a holistic view of the entire structural system or to make appropriate assumptions for the boundary conditions of the handrail in order to assess precisely the stress state of a single element of an all-glass railing. The idea of the method presented is to set elastic springs at the ends of the single element’s rail to simulate the stiffness of the adjacent glazing. As these elements are usually charged by wind or horizontal live load, too, the additional supports must not be applied for the entire load and are therefore divided in up to three parts. Each part is put onto a corresponding model of the considered single element and glass stresses are calculated subsequently. Finally, the superposition principle leads to the actual maximum stress. Within a parameter study the new method is compared to former methods and to the results of calculations done with extended FEA-models that comprise the neighbouring structure. The new approach shows a good accordance with the latter and exceeds the former methods by far. Hence it contributes to a more economic glass design.

Published

2018-05-06

Issue

Section

Projects & Case studies

Keywords:

free-standing glass protective barriers, calculation method, economic glass dimensioning