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There is some knowledge on the stability behaviour of glass panes under axial 
loading, i.e. of their buckling stability. However, only a few investigations have 
been performed so far in this direction, predominantly at cross-sections with mono-
panes and sporadically at cross-sections with laminated glass. Thus a research 
project was initiated by the German Steel Construction Association (DSTV) and the 
German Ministry of Economics, by which the buckling of pane-like glass columns 
with mono- and laminated sections was thoroughly investigated. The article focuses 
on the results for buckling with monolithic sections of heat strengthened and 
tempered glass, giving buckling curves proposed by derivations and experiments.  
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1. Introduction 
Transparent architecture demands for transparent load-bearing elements, such as pane-
like glass columns of heat strengthened (HSG) or tempered glass (TG). For this 
laminated section will be is necessary in order to achieve sufficient robustness against 
impact and also to achieve redundancy, figure 1. Design of such load bearing glass 
structures necessitates the knowledge about the stability behaviour of laminated glass 
panes and appropriate technical rules. However, before laminated glass is investigated 
the buckling behaviour of monolithic glass columns needs to be resolved. Therefore the 
aim of the analytic and experimental investigations of this paper is to derive simple and 
consistent design rules for pane-like glass columns with monolithic sections of heat 
strengthened and tempered glass under axial loading. The proposed design rules are 
verified by existing buckling tests [1, 2, 3, 4, 5] and by experimental tests and numerical 
simulations [6] of the RWTH Aachen University. 
The presented results are a part of a research project [6], the scope of which was in 
addition to the monolithic pane-line glass columns also glass columns with laminated 
glass sections. Insofar the results for the monolithic glass columns are also basis for the 
research the buckling behaviour of glass columns with laminated sections and their 
technical rules. 
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Figure 1: Application of pane-like glass columns: Glaspavillon Rheinbach (D). 

2. Consistent buckling curves for monolithic pane-like glass columns 
The inhomogeneous differential equation for slender glass columns under an axial 

compression force EN using a sinusoidal imperfection )sin()( 0 l
xexe ⋅

⋅=
π , figure 2, 

can be expressed by  
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Figure 2: Origin, perfect and deformed imperfect system of a slim column, e(x)=imperfection, w(x)= bending 
ordinate. 

 
Assuming that bending and imperfection shape are affine, the total deflection in the 

middle of the column )
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( lxwges =  results from both the initial imperfection 0e  and 

flexural bending deflection w  due to the normal force and reads 
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for which crN is the Euler buckling force 
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The stress equation according to 2nd order theory using the magnification factor 

cr

E

N
N

−1

1  reads as follows: 

cr

E

EE

N
NW

eN
A

N

−
⋅

⋅
±−=

1

10σ . (4) 

If the value of the imperfection 0e  and the permissible stress uf  are known, the 
buckling stability can be assessed by equation (4) in the form of a stress verification. 
However, as the magnitude of the compressive strength of glass differs from that of the 
tensile strength, the verification of buckling resistance must fulfil both a compression 
and a tension check: 

tu

cr

E

EE
t f

N
NW

eN
A

N
,

0

1

1
≤

−
⋅

⋅
+−=σ ; and 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=
HSGfor

mm
N

TGfor
mm

N

f tu

²
120

²
70

,
             (4a) 

cu

cr

E

EE
c f

N
NW

eN
A

N
,

0

1

1
≤

−
⋅

⋅
−−=σ and e.g.

²
500, mm

Nf cu −=                     (4b) 

In view of a consistent verification format, which avoids the double check for both the 
compression and tensile case, buckling curves are to be proposed for monolithic pane-
like glass columns, which are independent of the glass strength but are able to separate 
the range of the compressive strength from that of the tensile strength. The background 
for this purpose are buckling curves in the established European form  
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which depends on the non-dimensional slenderness 
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Reference value of the strength shall be the standardized tensile strength tuf , (index “t” 

at tuf , , tλ  and tχ ). The stress equation (4a) then reads using the variables tλ  and tχ : 
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Implementing a parameter )(0 te λ  considering the effect of the geometric imperfection 
of the glass member  

A
We tt ⋅⋅= λαλ )(0 , (8) 

equation (7) can be written in the Ayrton-Perry-format: 
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The solution of equation (9) is the function of the buckling curves )( tt λχ  for that range 
of slenderness, in which tensile failure is decisive 
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Analogously, but with different sign, equation (4b) describes that range of slenderness, 
in which the compression failure is decisive 
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The variableα  results from the equation (8) and can be written as: 
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Using an effective imperfection value e.g. 400/0 le =  (this effective imperfection was 
verified in [2, 4] and [6] for buckling test with centric normal force), so 

430,0=TGα and 329,0=HTGα yield from equation (15). 
As a result figure 3 shows the so derived buckling curves with non-dimensional 
slenderness relating to tensile strength for heat strengthened and tempered glass. 
Thereby the range, in which the failure due to reaching the compressive strength or due 
to reaching the tensile strength is decisive, is visible.  
The intersection point of the buckling curves )( tt λχ  with 0,1=tχ  can be considered 
as a horizontal curve shift like the European buckling curves for steel columns [7] 
incorporate. For attaining a formal compatibility with the European buckling curves the 
buckling curves for glass columns can be written: 
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Equation (16): ),( 0,
*

ttt f λλχ = and equation (17): ),( 0,ttf λλφ =∗ are not identical 

with the equation (10): )( tt f λχ =  or the equation (11): )( tt f λφ = respectively. We 
see that two different buckling curves depending on the respective glass strength are 
remaining. Therefore, in order to avoid different buckling curves for heat strengthened 
and tempered glass the value forα has to be equalized. For this purpose the α -value for 
tempered glass should be selected also for the heat strengthened glass: 

430,0, == newHSGTG αα . In this case the effective imperfections are 400/0 le TG =  and 

300/306/0 lle HSG ≅= . Thus the proposal for consistent buckling curves in the 
European form reads (figure 4): 
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Figure 3: Buckling curves for monolithic glass 
columns: tempered and heat strengthened glass 

according to equation (10) and (12). 

Figure 4: Consistent buckling curves for monolithic 
glass panes with heat strengthened and tempered glass 

sections according to equation (19). 

3. Experimental tests on monolithic glass columns 

3.1. Experimental set-up  
The analytic buckling curves have been verified by experimental tests on monolithic 
pane-like glass columns performed at the RWTH Aachen University. The glass columns 
were simply supported at its ends according to Euler’s case II. The experimental set-up 
for buckling and in particular the design of the bearings accord to [2], figure 5. For 
those hinged bearings at the ends of the glass panes shaft constructions that fit to the 
groove inside of the bearing roller was provided. In each of the grooves the glass pane 
was put on a 6 mm block of aluminium and was fastened using adjusting screws, by 
which a steel mounting plate with an interlayer of Klingersil C4500 was pressed against 
the glass surface.  
The proof load then was applied by a hydraulic jack fixed on the upper bearing and was 
measured by a load cell. Further the lateral deformation in the middle of the glass pane 
was measured by a displacement transducer.   
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Figure 5: Experimental set-up for buckling of glass-panes according to [2]. 

3.2. Specimen 
A total of 12 specimens (heat strengthened or tempered glass) were tested in buckling, 
table 1. The dimensions of the specimen were chosen such, that a range of the non-
dimensional slenderness of the buckling curves of about 0,1=λ  to 0,3=λ  was 
covered. Further the glass columns were tested with centric and excentric normal force.   
 

Table 1: Specimen and test results (remark: buckling length lk=l+12 mm due to test set up). 

section 
dimensions Span

Tempered Glass 
(TG) or heat 

strengthened glass
(HSG) 

Measured 
imperfection 

before buckling 
test 

Regular 
excentricity

Effective 
imperfection 

Failure 
load  Specimen 

W x t L  es ep e0 Fu 

 [mm] [mm] [-] [mm] [mm] [mm] [kN] 

1 250 x 10 250 TG 0,05 - 0,53 166,5 

2 250 x 10 500 TG 0,10 - 1,94 44,7 

3 250 x 10 750 TG 0,40 - 2,08 21,1 

4 250 x 12 250 TG 0,00 - 2,97 220,4 

5 250 x 12 500 TG 0,10 3,0 6,02 22,3 

6 250 x 12 750 TG 0,15 3,0 6,72 22,7 

7 250 x 10 250 HSG 0,05 - 0,41 171,2 

8 250 x 10 500 HSG 0,05 - 1,41 46,9 

9 250 x 10 750 HSG 0,15 - 1,51 21,7 

10 250 x 12 250 HSG 0,05 - 0,58 291,9 

11 250 x 12 500 HSG 0,15 3,0 6,38 64,3 

12 250 x 12 750 HSG 0,20 3,0 7,47 27,3 
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Before measuring of the thickness, the width, the length and moreover the stresses on 
the surface of the glass (Scattered Light Polariscope 03) have also exactly been 
measured and recorded. As a result it could be found that the measurements met the 
requirements of the EN 1863-1 for tempered glass and the EN 12150-1 for heat 
strengthened glass. 
Further the geometrical imperfections for all available specimens of monolithic or rather 
laminated glass (84 specimens) was recorded according to EN 1863-1 and EN 12150-1 
before the specimens were installed in the set-up. The imperfection of the specimen 
generally showed a half-sinus wave form, the maximum of which normally was found 
in the middle of the length. Also those met the requirements of the standard codes.  

3.3. Experimental procedure and the results of the buckling tests 
The specimens were loaded to failure with a loading rate of 0,10 mm/min at room 
temperature about 23°C. The breakage of the glass columns always came along with a 
loud bang. The fracture structure of heat strengthened glass (finest smithereens) was 
different from that of tempered glass (big pieces), as expected.  
The buckling tests were evaluated with the measured, real section dimensions and 
length. The effective imperfection 0e  (which include all imperfections from the 
installation the glass columns in the set-up and from the set-up itself) was determined 
by the so-called “Southwell Plots” [3, 6] and was considered within the numerical and 
analytical calculations.  
The experimental force-displacement-curves and force-stress-curves have been 
compared to the analytical and numerical calculations, figure 6. The comparison shows 
well correlation. 
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Figure 6: Example: experimental force-displacement-curve (left) and force-stress-curve (right) for the test 
specimen No. 3 including the analytical and numerical calculations. 

 
Figure 7 illustrates the comparison of all buckling tests being centrically loaded as well 
as all buckling tests being excentrically loaded. The force-displacement-curves of equal 
section dimensions and lengths agree each to another except specimen no. 10 and 4. It is 
also well visible that the buckling failure occurs on a lower load level in case of 
columns of tempered glass than in case of columns of heat strengthened glass. 
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Specimen no. 5 with regular excentricity showed a premature collapse, figure 7. The 
reason for this traces back to the fact that the glass pane showed defects or flaws in the 
area of the edges. Therefore the results of specimen no. 5 were ignored in the further 
evaluations. 
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Figure 7: Load-Deformation behaviour of buckling tests at glass panes with monolithic section with centric 

normal force (left) as well as with normal force and excentricity ep=3,0 mm (right). 

3.4. Comparison of the buckling curves to experimental tests 
Figure 8 shows the comparison of all results of specimen without excentricity to the 
proposal according to equation (10) considering different α -values as well as to the 
consistent buckling curves according to equation (19) considering uniform α -values. 
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Figure 8: Comparison of the analytic buckling curves for monolithic glass columns to experimental test results 
without regular excentricity. 
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Moreover, figure 9 presents the comparison of all experimental buckling results having 
a regular excentricity pe  (the excentricity was intentionally provided to study the effect 
of installation tolerances) to equation (10) including an effective imperfection 

p
TG ele += 400/0  for tempered glass respectively p

HSG ele += 300/0 for heat 
strengthened glass. A value representing an installation tolerance is useful and should be 
considered in the design calculations. The value for this may be (as proposed here) 

mmep 0,3=  being aware that this value need not to be in conformity to any tolerance 
standards. 
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Figure 9: Comparison of the analytic buckling curves for monolithic glass columns to the experimental test 
results with excentricity ep. 

 
If the effective imperfections p

TG ele += 400/0  or p
HSG ele += 300/0  respectively is 

implemented in equation (10), according to equation (19) the common variables 
0,1== ESGTVG αα and 2,00, =tλ  can be determined whilst meeting the format of the 

European buckling curves. The effective imperfections then can be adjusted in a way so 
that the values of )(λχ  consider 170/400/0 lele p

TG ≅+=  and 

130/300/0 lele p
HSG ≅+= respectively. For the determination of the partial safety 

factors Mγ , see chapter 3.5, the corresponding effective imperfections are also taken 
into an account.  

3.5. Determination of the partial safety factor 
The partial safety factor Mγ was evaluated according to EN 1990 annex D considering 
75% confidence probability and a 5% fractile for the characteristic value or rather a 
0,1 % fractile for the design value taking into account of real geometries and strengths, 
figure 10.  
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Figure 10: Statistical distribution used for the determination of the partial safety factors for equation (19) 

considering the imperfection approaches. 

 
The partial safety factors were evaluated for the design formula according to equation 
(10) or (12) as well as for the formula according to equation (19), separately for both 
sorts of glass, tempered and heat strengthened glass. As aforementioned, the buckling 
tests having a regular excenticity were considered, too. The evaluations are shown in 
table 2.  
 

Table 2: Partial safety factors γM . 

γM 
Design concept 

Tempered glass (TG) Heat strengthened glass (HSG) 

Equation (10) or (12) 1,280 1,390 

Equation (19) with e0=l/400 for TG or 
rather e0=l/300 for HSG 

1,287 1,363 

Equation (19) with e0=l/170 for TG or 
rather e0=l/130 for HSG 

1,491 - 

4. Numerical Calculations 
The monolithic glass columns were modeled by using the FEM simulation software 
ABAQUS with 3-dimensional C3D8I-elements that provide 8 nodes continuum 
elements (volume elements). Like in the tests the buckling members were simply 
supported at its ends according to Euler’s case II. On the upper articulation the load was 
simulated as applied onto the center line of the glass butt end. The material behaviour of 
glass was implemented by using a modulus of elasticity of E= 70 000 N/mm² and a 
Poisson ratio of μ =0,23. 
For recalculation of the experimental buckling tests the real dimensions and lengths as 
well as the determined effective imperfection from the experiments were used. A 
comparison of the numerical simulation to the experiments plus the analytic calculations 
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shows a well correlation of all results, figure 9, and it validates the numerical model for 
further parametric studies, the results of which are presented in figure 8.   

5. Summary  
Architectural requirements extend the application of load bearing glass elements, e.g. 
glass columns and glass beams. With regard to the buckling resistance of pane-like 
glass columns with monolithic sections of heat strengthened and tempered glass the 
afore presented investigations can be concluded by the following: 

a) On the basis of the second order theory, buckling curves for glass columns are 
derived from the stress equation, which could be transferred into the format of 
European buckling curves. The comparison of the proposed analytic buckling 
curves to experimental buckling tests as well as to the numerical calculations 
shows a good prediction of the proposed buckling curves, a fact that is also 
represented by low partial safety factors Mγ . 

b) For the effective imperfections the following values are proposed: 400/0 le =  
for tempered glass and 300/0 le =  for heat strengthened glass. However, in 
practice, installation tolerances have always to be considered. These have 
conservatively been estimated by a value of 3,0 mm for glass columns with a 
thickness of 12 mm. Considering this, effective imperfection values of 

mmle TG 0,3400/0 +=  or mmle HSG 0,3300/0 +=  respectively come out. By 
this the basis for the implementation of buckling curves as proposed in technical 
rules or codes are laid down. 

c) The research results also provide the foundation for further research projects with 
laminated glass, e.g. on buckling of glass columns or the lateral torsional buckling 
of glass beams with laminated glass sections. 
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Federation of Industrial Research Associations Otto von Guericke (AiF) of the 
German Ministry of Economics.   

6. References 
[1] Güsgen, Joachim, Bemessung tragender Bauteile aus Glas, Schriftenreihe Stahlbau - RWTH Aachen,  

Heft 42, Shaker Verlag, Germany, 1998. 
[2] Luible, Andreas, Stabilität von Tragelementen aus Glas, Dissertation Thèse N0 3014, EPFL Lausanne, 

Switzerland, 2004. 
[3] Holberndt, Tobias, Entwicklung eines Bemessungskonzepts für den Nachweis von stabilitätsgefährdeten 

Glasträgern unter Biegebeanspruchung, Dissertation, TU Berlin, Germany, 2006. 
[4] Liess, Johannes, Bemessung druckbelasteter Bauteile aus Glas, Dissertation, Universität Kassel, 

Germany, 2001. 
[5] Weiler, Hans-Ulrich, Versuchsergebnisse und Stand der Entwicklung eines Bemessungskonzepts für 

druckbeanspruchte Glasbauteile, VDI Berichte Nr. 1527, Bauen mit Glas, VDI Verlag, Düsseldorf, 
Germany, 2000. 

[6] Feldmann, Markus, Langosch, Katharina, Vereinfachte und einheitliche Stabilitätsnachweise für 
Bauteile aus Einscheiben- und Verbundsicherheitsglas für Druck und Biegung, DASt-Forschungsprojekt 
Nr. 15060/N, Germany, 2009. 

[7] Maquoi, R., Rondal, J., Analytische Formulierung der neuen Europäischen Knickspannungskurven, 
Stahlbau 1/1978, Germany, 1978. 


