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Abstract 

We discuss a novel approach, based on fractional calculus with a non-uniform time discretization, to 
numerically simulate interlayer viscoelastic behaviour and associated time-dependent deformation of 
laminated glass. Reference is made to the classic example of a simply supported laminated glass beam 
under long-duration loads. The fractional model is compared with some results obtained using the 
widely used finite element software ABAQUS 2021, which for the viscoelastic properties of the 
polymeric interlayer, utilizes the more traditional approach based on the Wiechert model and 
approximation via Prony series of the relaxation function and a uniform discretization of time for the 
numerical solution. The model is also validated through the comparison with experimental test.  The 
novel approach based on fractional calculus presents two main advantages: 1) the definition of the 
model parameters from experimental data is simplified; and 2) the numerical implementation is easier 
and computationally more efficient. When a long observation time is considered, the use of a non-
uniform time discretization presents the great advantage of not neglecting any part of the relaxation 
function. Use of traditional uniform time discretization requires the use of large time steps making it 
impossible to describe all the changes of the relaxation curve within the large time interval. Practical 
examples will be presented using viscoelastic models for Trosifol® Extra Stiff (PVB) and SentryGlas® 
interlayers. This methodology also shows potential to advance next generation standards for the 
design of structural laminated glass. 
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1. Introduction 

Laminated glass is a layered structure composed by two (or more) glass plies bonded together by one 
(or more) thin thermoplastic polymeric interlayers, considered “flexible” . This means that the 
interlayers have no significant axial/flexural stiffness, and only provide shear coupling of the glass plies. 
The most used commercial interlayers are polyvinyl butyral (PVB), Ionoplast SentryGlas® (SG) and 
ethylene-vinyl acetate (EVA). Many variations of these materials exist depending on the number of 
plasticizers and metal salt added and the type of processing (M. Martin, 2020). In most design 
calculations the quasi-elastic approximation is followed, where the polymeric film is considered linear 
elastic, with an effective shear modulus calibrated on the duration of applied actions and operating 
temperature, which coincides with the secant value in relaxation tests. This is a simplified approach 
widely used in Standards and suitable for engineering approaches. However, when impulsive actions 
are applied (impact, blast waves), or when laminated glass is permanently strained as in cold bending 
and cold lamination bending, and more generally when the load is not monotone, the hereditary 
memory of viscoelasticity, neglected in the quasi-elastic approximation, may play a significant role (L. 
Galuppi, 2013). In such cases, a full viscoelastic analysis is required. The interlayer capacity of coupling 
the glass plies varies between the upper limit of full coupled glass plies (monolithic limit) and the 
opposite lower limit of free-sliding plies (layered limit). The viscoelastic materials provide a condition 
that varies in time within these two limit cases. 

The classical way to interpret the relaxation function of a polymeric material is through the Prony series 
based on the Maxwell-Wiechert model, which is the most general model for linear viscoelasticity (L. 
Biolzi, 2020).  It takes into account that the relaxation does not occur at a single time, but in a set of 
times, so the relaxation curve is represented as a summation of exponential terms modeled as spring-
dashpot elements in parallel each with different decaying time and a single spring which is the stiffness 
of the material for times that tends to infinity (when all the dashpots are totally relaxed). However, 
experiments on a wide class of materials and, particularly, on most commercial polymers used as 
interlayers, indicate that the relaxation function can be well approximated by branches of power laws 
of time (L. Viviani M. D., 2023). In a bi-logarithmic plot of the secant shear modulus vs. time, these 
correspond to a polyline, each segment of which is completely described by two parameters, i.e., its 
slope and the intercept with a vertical axis. When the relaxation function of a viscoelastic material is 
described by power laws, it is very effective to use rheological models based on fractional calculus. A 
fractional derivative is a derivative of any arbitrary order, real or complex, whose form coincides with 
Boltzmann’s convolution integral when the relaxation function is a power law. The numerical 
approximation of fractional derivatives can be performed via the Grünwald-Letnikov approximation (R. 
Scherer, 2011), which is very efficient since it provides the direct construction of a triangular matrix 
that operates on the discretized array of values of the relevant variables, which can be readily inverted. 
However, one of the major drawbacks of this method is that it is based on the discretization in constant 
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time steps: when the interval of observation is wide, too many steps would be needed to describe the 
long-term response. On the other hand, enlarging the time step results in a loss of accuracy.  

What proposed here is an alternative numerical implementation of the viscoelastic model based on 
fractional calculus, according to which the approximation of the fractional derivates uses the L1 
formula (R. Fazio, 2018). This allows for a variable time step, which increases in time to properly 
describe all the parts of the relaxation function (L. Santi G. R.-C., 2024), (L. Santi G. R.-C., 2024). 

2. Polymeric interlayer relaxation function 

The viscoelastic behaviour of the materials used as interlayers can be described by their relaxation 
function. It is the long-term creep response of the material that indicates the stiffness’s time 
decreasing. The relaxation function, for the interlayer, is experimentally obtained by prescribing a 
constant strain and measuring the stress decrease, i.e., the decay in time of the secant elastic modulus 
of the homogeneously strained specimen, or via oscillation experiments and TTS (DMA approach 
according En16613). Structural modelling usually relies on Boltzmann’s superposition principle (linear 
viscoelasticity) and requires, as input datum, the relaxation function of the polymer. 

In the case of the laminated glass beam, the relaxation curve represents the coupling capability of the 
polymeric interlayer in time. In Figure 1 are represented the experimentally obtained relaxation curves 
of two commercial materials as function of time: Trosifol® Extra Stiff (PVB) indicated with the red line 
and SentryGlas® indicated with the blue line obtained at the environmental temperature of 20o C with 
Dynamic Thermal Mechanical Analysis (DTMA). The experimental curves are provided by Kuraray 
GmbH, which also manufactures the interlayers (M. Schuster, 2023). The relaxation function’s 
qualitative trend of these materials is also published in (X. Centelles, 2021). It is possible to notice that, 
in the beginning, the two materials have the similar stiffness, but over time the stiffness of Trosifol® 
Extra Stiff (PVB) significantly decreases, instead in the case of SentryGlas® it is much higher than the 
first material. This kind of behaviour is common for all the PVB’s types, and the effect of this property 
on the laminated glass will be evident in the following sections. Trosifol® Extra Stiff (PVB) and 
SentryGlas® are recalled Stiff PVB and Ionomer in the following for brevity. 

The same curves are obtained in other experimental campaigns as shown in (X. Centelles, 2021), (L. 
Viviani M. D., 2023).  

 

Fig. 1: Long term experimental viscoelastic response of the materials Trosifol® Extra Stiff (PVB) indicated with the red line 
and SentryGlas® indicated with the blue line obtained at the environmental temperature of 20o C. 
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2.1. The Prony series approximation 

The classical way to interpolate the trend is through Prony series, which is a summation of exponentials 
terms of the form 𝑅𝑅𝑖𝑖𝑒𝑒−𝑡𝑡 𝜗𝜗𝑖𝑖⁄ , where 𝑅𝑅𝑖𝑖 is the i-th relaxation shear modulus, and 𝜗𝜗𝑖𝑖 the corresponding 
relaxation time.  This series interprets the Wiechert model of viscoelasticity, which consists of an array 
of Maxwell units in parallel with a spring of stiffness 𝑅𝑅0, which represents the residual stiffness of the 
viscoelastic material when time tends to infinity (A.V. Duser, 1999). Consequently, the relaxation 
function reads:  

𝑅𝑅(𝑡𝑡) = 𝑅𝑅0 + ∑ 𝑅𝑅𝑖𝑖𝑒𝑒−𝑡𝑡 𝜗𝜗𝑖𝑖⁄𝑁𝑁
𝑖𝑖=1                                                                                                                         (1)       

Figure 2 represents the approximation of the curves shown in Figure 1 for the two materials obtained 
using 11 terms of the series, this implies that 23 parameters need to be calibrated. A practical 
method, that has been used in this paper, to calibrate the coefficients is the Domain of Influence 
method (Bower, 1997), but its application is not straightforward, because the parameters are not 
supported by a geometric interpretation. On the one hand, a good fitting can only be obtained for a 
finite interval of observation: the longer this is, the higher the required number of terms in the Prony 
series. Similar procedure and fitting for a polymeric relaxation curve are also obtained in (S. J. 
Bennison, 1999). In Table 1 is represented the Prony series coefficients used to approximate the 
relaxation function of the two interlayers. 

Table 1: Parameters 𝑅𝑅0, 𝑅𝑅𝑖𝑖 and 𝜗𝜗𝑖𝑖, defining the relaxation function in terms of Prony series,  
for Stiff PVB and Ionomer at 20o C. 

Stiff PVB  Ionomer 

    𝑅𝑅𝑖𝑖 [MPa] 𝜗𝜗𝑖𝑖 [s] 𝑅𝑅𝑖𝑖   [MPa] 𝜗𝜗𝑖𝑖 [s] 

      107.4573     0.0044   48.5509 0.0046 

        70.8787   0.0543 35.1113 0.0564 

        56.6252  0.6698 30.5430 0.6948 

        45.9465 8.2574   26.9701 8.5660 

        119.3430  115.9269 23.8441 105.6061 

        60.4867 779.7002 21.0825 1.3020e+03 

        14.6241 9.6125e+03 18.6409 1.6051e+04 

        3.5357 1.1851e+05 16.4821 1.9789e+05 

       0.3214 1.7177e+06 14.5733 2.4396e+06 

        0.1888 2.8212e+07 12.8856 3.0077e+07 

        0.1446  3.4781e+08 11.3933   3.7080e+08 

𝑅𝑅0 = 480.0389 MPa 𝑅𝑅0 = 348.2662 MPa 
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Fig. 2: Relaxation curves of the materials Stiff PVB  
(a) and Ionomer (b) both tested at the temperature of 20o C approximated with 12 terms of the Prony series. 

In the article (DIBt, 2022) are reported the Stiff PVB’s Prony parameters at the same temperature. It is 
possible to notice from the table in the paper, those parameters present some small differences 
because they have been calculated for a different observation period and using a different number of 
parameters in the Prony series, but the qualitative trend of the relaxation curve is the same. 

2.2. Fractional derivatives approximation 

The shape of the relaxation function suggests that another feasible interpolation can be obtained with 
continuously connected branches of power laws, each one of the forms 𝐶𝐶𝛼𝛼𝑡𝑡−𝛼𝛼 , with 0 < 𝛼𝛼 < 1 (L. 
Viviani M. D., 2023). In the bi-logarithmic plot a power law corresponds to a straight line, this means 
that the curves of Figure 1 shall be approximated by a polyline composed of four segments, as indicated 
in Figure 3, where is represented as an example the material Stiff PVB. Each segment is defined by 2 
parameters: the slope 𝛼𝛼  of the line and 𝐶𝐶𝛼𝛼  [𝑀𝑀𝑀𝑀𝑀𝑀 𝑠𝑠𝛼𝛼], representing the stiffness value at 𝑡𝑡 = 1 𝑠𝑠 . 
When the relevant interval of observation for the phenomenon is reduced, or in the case of the 
Ionomer where the curve can be easily approximated with only one power law, it can be sufficient to 
consider fewer branches.  

 

Fig. 3: Relaxation curve of Stiff PVB tested at the temperature of 20o C approximated with four branches of power laws. 

  

https://doi.org/10.47982/cgc.9.619
https://doi.org/10.47982/cgc.9


 

6 / 16 Article 10.47982/cgc.9.619 Challenging Glass Conference Proceedings – Volume 9 – June 2024 

Table 2 presents the values of the coefficient of the power laws for each branch considered in the 
previous approximation. These values can be easily obtained through a linear interpolation of the 
graphs in Figure 1. This is a big advantage over the use of the Prony series approximation because to 
represent the relaxation curve we need less parameters, and they are also easier to calibrate.  

Table 2: Coefficients that define the power-law approximation for the materials indicated in Figure 1. 

 Stiff PVB Ionomer 

𝐶𝐶𝛼𝛼1
 [𝑀𝑀𝑀𝑀𝑀𝑀 𝑠𝑠𝛼𝛼1 ] 

𝛼𝛼1 

258.1 

0.0826 

247.52 

0.049 

𝐶𝐶𝛼𝛼2
 [𝑀𝑀𝑀𝑀𝑀𝑀 𝑠𝑠𝛼𝛼2 ] 

𝛼𝛼2 

1946.2 

0.5652 
 

𝐶𝐶𝛼𝛼3
 [𝑀𝑀𝑀𝑀𝑀𝑀 𝑠𝑠𝛼𝛼3 ] 

𝛼𝛼3 

4.3 

0.1063 
 

𝐶𝐶𝛼𝛼4
 [𝑀𝑀𝑀𝑀𝑀𝑀 𝑠𝑠𝛼𝛼4 ] 

𝛼𝛼4 

453.6 

0.3081 
 

 

Figure 4 shows the representation of the two materials Stiff PVB (a) and Ionomer (b) through power 
laws, it is possible to notice that this approximation provides an excellent interpolation of the 
experimental points and it is accurate for most commercial polymers used as interlayers in laminated 
glass.  

 

Fig. 4: Relaxation curves of the materials Stiff PVB (a) and Ionomer (b) both tested at the temperature of 20o C 
approximated with branches of power laws. In the first material four branches are needed to represent the relaxation curve 

for the entire observation time, however for the second material only one power law is necessary. 
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From the Stiff PVB’s relaxation curve is possible to notice some pattern that are typical for these kinds 
of materials used as interlayer. As investigated in (R. Alasfar, 2022), the curve, which has been divided 
in four different lines, present some typical branches:  

• the first line, where the modulus is high, is called “Glassy region”. Here the polymeric interlayer 
presents the higher coupling capability between the glass plies.  

• the second line is the “Glassy transition” where the negative slope of the line is higher, and the value 
of the relaxation modulus rapidly decrease in time.  

• the third is the “Rubbery Plateau”, here the relaxation function settles on a lower value and do not 
decrease rapidly.  

• the fourth is the “Viscous Flow” where the negative slope of the line increase and the material tends 
to not provide a high coupling between the glass plies due to a low value of the relaxation function. 

Those branches are obtained analysing the time trend of the elastic shear modulus of the polymeric 
material at a fixed temperature, but they can be also obtained varying the temperature in a small 
observation period. This property is at the basis of the William Landel Ferry model (M. L. Williams, 
1955) which establishes a correlation between the time scale of the rheological phenomenon and the 
operating temperature. The response at other temperatures can be obtained by assuming the Time-
Temperature Superposition principle (TTS), according to which any variation of the testing 
temperature is associated with a variation of the time scale for the effects of viscosity. Ionomer’s 
relaxation function doesn’t show those four different branches in this specific time interval even if the 
trend is decrescent, however also for this material, the curve tends to a lower limit value close to zero, 
at infinite load duration and temperature approaching its melting point. Experimental data at different 
temperatures are also available in the material’s portfolio (Kuraray, 2023), where it is possible to 
observe this lower plateau effect for high temperature. 

The influence on the laminated glass structure’s deformation when the interlayer is in one of these 
different branches will be deeply analysed in the following sections. 

There is a mathematical description of the equations of viscoelasticity founded on fractional calculus, 
because Boltzmann’s convolution integral coincides with the Caputo fractional derivative of order 𝛼𝛼 
when the relaxation function is expressed by a power law, as indicated as follows:  

𝐷𝐷0𝐶𝐶 𝑡𝑡
𝛼𝛼[𝑓𝑓(·)](𝑡𝑡) = 1

𝛤𝛤(1−𝛼𝛼)∫ (𝑡𝑡 − 𝑡𝑡̅)−𝛼𝛼𝑓𝑓̇(𝑡𝑡̅)𝑑𝑑𝑡𝑡̅𝑡𝑡
0                                                                                              (2) 

However, to establish such a precise correspondence, it is necessary to formally write the power-law 
terms by defining the coefficients in terms of Euler’s Gamma function Γ, which is the generalization 
of the factorial n! to non-integer or complex values of n. In conclusions, the power-law approximation 
shown in Figure 3 of the relaxation function 𝑅𝑅(𝑡𝑡) takes the analytical form: 

𝑅𝑅(𝑡𝑡) =  

⎩
⎪⎪
⎨

⎪⎪
⎧

𝐶𝐶𝛼𝛼1
𝛤𝛤(1−𝛼𝛼1)

𝑡𝑡−𝛼𝛼1  ,                 𝑡𝑡 ≤ 𝑡𝑡𝐴𝐴
𝐶𝐶𝛼𝛼2

𝛤𝛤(1−𝛼𝛼2)
𝑡𝑡−𝛼𝛼2 ,     𝑡𝑡𝐴𝐴 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝐵𝐵   

𝐶𝐶𝛼𝛼3
𝛤𝛤(1−𝛼𝛼3)

𝑡𝑡−𝛼𝛼3 ,        𝑡𝑡𝐴𝐴 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝐵𝐵
𝐶𝐶𝛼𝛼4

𝛤𝛤(1−𝛼𝛼4)
𝑡𝑡−𝛼𝛼4 ,                  𝑡𝑡 ≥ 𝑡𝑡𝐶𝐶

                                                                                                   (3) 
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3. Simply supported beam model 

The relaxation function described by branches of power laws with the fractional calculus will be applied 
to the model problem represented in Figure 5. This represents a simply supported three-layers beam, 
composed of two glass plies of thickness ℎ, bonded together by a thin polymeric interlayer of thickness 
𝑠𝑠 = 𝑟𝑟ℎ, with 𝑟𝑟 ≪ 1. The Euler-Bernoulli beam has length 𝐿𝐿 and width 𝑏𝑏; the cross-sectional area of 
each ply is 𝐴𝐴 = 𝑏𝑏ℎ  and the sum of the moments of inertia of the two plies is 𝐼𝐼 = 2·𝑏𝑏ℎ3/12 , 
corresponding to the beam inertia at the layered limit. The total beam mass per unit length is 𝜇𝜇 [kg/m] 
and it is calculated by multiplying the glass density 2500 kg/m3 by the cross-sectional area 2A [m2] of 
the glass (the interlayer mass is neglected). A reference frame (y, z) is used as indicated in the Figure 
5. The beam is further subjected to the load per unit length 𝑝𝑝(𝑧𝑧, 𝑡𝑡), variable in time. This model has 
been already analysed in (L. Viviani M. D.-C., 2022) (L. Santi G. R.-C., 2024). 

 

Fig. 5: Structural model problem of a simply supported laminated beam composed of two linear elastic glass plies bonded 
by a viscoelastic interlayer. 

The interlayer is considered “flexible”, so its axial and bending stiffness is negligible, but it can provide 
the shear coupling of the glass plies, and it is supposed “thin”, so that the shear stress is constant 
in the thickness, although it can vary along the beam axis. Because of symmetry, it is sufficient to 
consider the equilibrium of the upper half of the beam (extrados ply plus half of the thickness of the 
interlayer), indicated in Figure 6a, for which 𝑉𝑉(𝑧𝑧, 𝑡𝑡) is the shear force, 𝑁𝑁(𝑧𝑧, 𝑡𝑡) is the axial force, 𝑀𝑀(𝑧𝑧, 𝑡𝑡) 
is the bending moment and 𝜏𝜏𝑦𝑦𝑦𝑦(𝑧𝑧, 𝑡𝑡) is the shear stress provided by the interlayer considered positive. 
Let 𝑣𝑣(𝑧𝑧, 𝑡𝑡) denote the displacement of the point 𝑧𝑧 of the beam at the time 𝑡𝑡, considered positive in 
the 𝑦𝑦 direction. 

According to Figure 6b, 𝜑𝜑(𝑧𝑧, 𝑡𝑡) is the rotation of the cross-section, while 𝑢𝑢𝐴𝐴, 𝑢𝑢𝐵𝐵 and 𝑢𝑢𝐶𝐶  are the axial 
displacement of the points A, B and C, respectively. In the viscoelastic interlayer, from Boltzmann 
superposition principle one obtains the constitutive equation takes the form: 

 𝜏𝜏𝑦𝑦𝑦𝑦(𝑧𝑧, 𝑡𝑡) = 𝜏𝜏𝑦𝑦𝑦𝑦(𝑧𝑧, 0)𝑅𝑅(𝑡𝑡) + ∫
𝜕𝜕𝛾𝛾𝑦𝑦𝑦𝑦
𝜕𝜕𝑡𝑡̅

𝑅𝑅(𝑡𝑡 − 𝑡𝑡̅)𝑑𝑑𝑡𝑡̅𝑡𝑡
0                                                                                     (4) 

In general, it is supposed that at 𝑡𝑡 = 0  the structure is undistorted, so that 𝜏𝜏𝑦𝑦𝑦𝑦(𝑧𝑧, 0) = 0 . If the 
relaxation function is a simple power law or a piecewise function of power laws as indicated in Equation 
3: 

𝜏𝜏𝑦𝑦𝑦𝑦(𝑧𝑧, 𝑡𝑡) = ∫
𝜕𝜕𝛾𝛾𝑦𝑦𝑦𝑦
𝜕𝜕𝑡𝑡̅

𝐶𝐶𝛼𝛼
𝛤𝛤(1−𝛼𝛼)

(𝑡𝑡 − 𝑡𝑡̅)−𝛼𝛼𝑑𝑑𝑡𝑡̅𝑡𝑡
0 = 𝐶𝐶𝛼𝛼 𝐷𝐷0𝐶𝐶 𝑡𝑡

𝛼𝛼[𝛾𝛾𝑦𝑦𝑦𝑦(𝑧𝑧,·)](𝑡𝑡)                                                           (5) 

Because of the definition of Caputo fractional derivatives indicated in Equation 2. 
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Fig. 6: (a) Free body diagram of a segment of the upper half of the beam, comprising of the extrados ply and half of the 
thickness of the interlayer. (b) Rotation and axial displacements of representative points of the cross section of the beam. 

Considering the constitutive equation of the polymeric interlayer and the constitutive equation of the 
glass plies it is possible to write the governing equations of the system depending by the two unknows 
𝑣𝑣(𝑧𝑧, 𝑡𝑡) the vertical displacement and 𝑁𝑁(𝑧𝑧, 𝑡𝑡) the axial force. It is necessary to separate the dependence 
on 𝑧𝑧 and 𝑡𝑡 to solve the system and thanks to an approach à la Galerkin it is possible to express the two 
unknowns through Fourier series that satisfy the boundary conditions (the axial force, the vertical 
displacement and its second derivative over 𝑧𝑧 are null for 𝑧𝑧 = 0 and 𝑧𝑧 = 𝐿𝐿). Also considering the initial 
conditions (the axial force, the vertical displacement and its first derivative in time are zero for 𝑡𝑡 = 0) 
it is possible to describe the system with one fractional differential equation with the vertical 
displacement as the only unknown (𝑣𝑣𝑛𝑛(𝑡𝑡) that depends only on time). The mathematical details of this 
treatment are reported in (L. Santi G. R.-C., 2024), (L. Viviani M. D., 2023) and (L. Viviani M. D.-C., 2022). 

4. Numerical solution 

To solve the fractional differential governing equation is necessary to approximate the Caputo 
fractional derivative. The classical method is through the Grünwald-Letnikov approach based on a 
constant subdivision of the observation time interval (R. Scherer, 2011). Another way is to use the so 
called L1 formula which allows a variable time step (R. Fazio, 2018), (S. B. Yuste, 2012). For this 
comparison has been preferred to use the second method because a variable subdivision of the time 
interval allows to not neglect any part of the relaxation curve, instead if a constant subdivision of time 
is used the time step become every large for big observation time, and it is not possible to describe all 
the changes of the curve within the time step. The advantages to use the second method instead of 
the first has been widely analysed within paper (L. Santi G. R.-C., 2024). The result of this is a better 
interpretation of the viscoelastic behaviour of the interlayer in time that brings a more accurate 
solution and less computational time in the numerical calculus. The use of a variable time steps allows 
also to compare the numerical solution with the widely used finite element software Abaqus that 
automatically implement a variable time step inside the solver to catch all the changes of the relaxation 
function. 

4.1. The non uniform time discretization 

To follow the long-term response, it is convenient to use a variable time step, which shall be small at 
the beginning, when the derivative of the relaxation curve is high, and large in the long run, when the 
relaxation curve tends to zero. Observing that each branch of power-law is a straight segment in the 
bi-log graph, it is natural to consider a discretized time vector such that log(𝑡𝑡𝑖𝑖 + 1) − log(𝑡𝑡𝑖𝑖) = 𝑐𝑐 =
𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡, i.e., 𝑡𝑡𝑖𝑖+1 = 10𝑐𝑐𝑡𝑡𝑖𝑖, which corresponds to a constant interval in the bi-log graph. This partition, 
following a geometric progression, is shown in Figure 7. This choice is efficient and does not produce 

https://doi.org/10.47982/cgc.9.619
https://doi.org/10.47982/cgc.9


 

10 / 16 Article 10.47982/cgc.9.619 Challenging Glass Conference Proceedings – Volume 9 – June 2024 

noteworthy errors, because the relaxation curve of a viscoelastic material is steepest at the beginning, 
where a dense time mesh is needed to capture all its variations, but becomes flatter over time, so that 
larger time steps can be used. 

 

Fig. 7: Example of time mesh following a geometric progression. Graphs in (a) logarithmic scale and (b) linear scale. 

Figure 8 shows the time mesh in geometric progression for an observation time of 1012 s with reference 
to a typical relaxation function interpolated by four branches of power law (Stiff PVB at 20o C). Observe 
that each branch is homogeneously represented, in the sense that the variation of the relaxation curve, 
in the bi-log graphs, is equally considered by the proposed partition. 

 

Fig. 8: Stiff PVB relaxation curve at 20o C, approximated by four branches of power law, with evidence of the time mesh 
whose points follow a geometric progression (bilogarithmic representation). 

The Caputo’s fractional derivative can be approximated through the L1 formula, that for a generic 
function 𝑓𝑓(𝑡𝑡) reads: 

𝐷𝐷0𝐶𝐶 𝑡𝑡
𝛼𝛼[𝑓𝑓(·)](𝑡𝑡𝑠𝑠) = 1

𝛤𝛤(1−𝛼𝛼)∫ (𝑡𝑡𝑠𝑠 − 𝜏𝜏)−𝛼𝛼 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜏𝜏)𝑑𝑑𝜏𝜏𝑡𝑡𝑠𝑠
0   

= 1
𝛤𝛤(1−𝛼𝛼)

∑ 𝜕𝜕(𝑡𝑡𝑘𝑘)−𝜕𝜕(𝑡𝑡𝑘𝑘−1)
𝑡𝑡𝑘𝑘−𝑡𝑡𝑘𝑘−1

𝑠𝑠
𝑘𝑘=1 ∫ (𝑡𝑡𝑠𝑠 − 𝜏𝜏)−𝛼𝛼𝑑𝑑𝜏𝜏𝑡𝑡𝑘𝑘

𝑡𝑡𝑘𝑘−1
+ 𝑅𝑅𝑛𝑛                                                                             (6) 

Where 𝑅𝑅𝑛𝑛  is the local truncation error. The L1 formula can be easily applied to the vertical 
displacement and extended to a piecewise relaxation function composed by four temporal branches 
represented by power-laws, where the coefficients 𝛼𝛼 and 𝐶𝐶𝛼𝛼  vary in time as indicated in Figure 8. The 
total observation time is divided in 𝑠𝑠 intervals and each branch that compose the relaxation function 
contains a certain number of time intervals. Within a single branch the values of 𝛼𝛼 and 𝐶𝐶𝛼𝛼  remains the 
same. Also considering that  

1
𝛤𝛤(1−𝛼𝛼)∫ (𝑡𝑡𝑠𝑠 − 𝜏𝜏)−𝛼𝛼𝑑𝑑𝜏𝜏𝑡𝑡𝑠𝑠

0 = 1
𝛤𝛤(2−𝛼𝛼) [�𝑡𝑡𝑗𝑗 − 𝑡𝑡𝑘𝑘−1�

1−𝛼𝛼 − �𝑡𝑡𝑗𝑗 − 𝑡𝑡𝑘𝑘�
1−𝛼𝛼]                                                   (7)  
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Approximating the fractional derivative with the L1 formula, It is possible to rewrite the governing 
equation of the system and solve it using a finite difference approach. It is important to mention that 
the equation is transformed in implicit form, this allows calculation of  the vertical displacement at 
each temporal step. A more complete mathematical formulation of this treatment is published 
elsewhere (L. Santi G. R.-C., Variable time steps in the numerical implementation of viscoelastic 
fractional models for laminated glass, 2024). The complete solution is obtained by summing all the 
terms of the Fourier expansion, in this case, for a good approximation, is sufficient to consider the first 
non-null terms because they are dominant against the others.  

4.2. Comparison through the fractional model and ABAQUS 2021 

The algebraic equation is numerically solved with MATLAB. Consider, as a benchmark problem, the 
simply supported laminated glass beam. Set  L =  1.5 m , b =  1 m , h =  8 mm , s =  rh =

 1.52mm (r =  0.19), E =  72 GPa, μ =  40 kg
m

. The deformation of the beam is evaluated by the 

mid-span displacement v �z
2

, t�. The structure is subjected to a uniformly distributed load varying in 

time as shown in Figure 9: this is a uniformly distributed pressure p(t) that starts from zero and linearly 
increases, reaching the plateau 3 kPa in approximately 1 hour. Consequently, the load per unit length 
is q(z, t) =  b p(t)  The interval of observation is chosen sufficiently long, of the order of 109 s 
(approximately 3 years) to emphasize possible differences in the long-term creep response. The 
layered (monolithic) limit corresponds to free sliding (fully coupled) glass plies and is attained when 
Cα  →  0 (Cα  → ∞). The deflection at mid-span at the layered and monolithic limits can be evaluated 

as 5 · 384 b p(t)L4

EI
, with I =  IL  = 2bh3

12
and I =  IM  = 2bh3

12
+ (1 + r)2bh3

2
, respectively, which gives 

32mm and 6.1mm when p(t) reaches the maximum value of 3 kPa.  

 

Fig. 9: Pressure history used in the numerical experiments. 

The capacity of the polymeric interlayer to couple the glass ply can be qualitatively estimated by 
comparing the calculated value of v(L/2, t) through the resolution of the governing equation before 
mentioned with the monolithic and layered limits. In general, the stiffer the relaxation curve, the lower 
the displacement shall be, for example, referring to Figure 1, lower values of the vertical displacement 
with for Ionomer than Stiff PVB are expected.  

The fractional viscoelastic model is validated via comparison with the results obtained with the 
commercial finite element software ABAQUS 2021 (ABAQUS/Standard User’s Manual, Version 6.9., 
2021). This implements a full viscoelastic analysis based upon the solution of the integral-differential 
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equations resulting from Boltzmann superposition principle, but it does not use the mathematical 
characterization via fractional calculus and the relaxation function can only be assigned as a Prony 
series of exponential terms, as shown in equation (1). The numerical solver uses a variable time-step 
of integration, which is automatically updated to minimize the temporal mesh for convergence. The 
beam structure has been modelled with 8-node solid elements, available in ABAQUS library. The glass 
is linear elastic, whereas the interlayer is a linear viscoelastic incompressible material, for which the 
relaxation function under shear is described by Prony series, the coefficients are reported in Table 2. 

Figure 10 shows the comparison between the solution obtained through fractional differential 
equation indicated with dotted line (L1) and the finite element model in ABAQUS indicated with 
asterisks. The two solutions perfectly coincide and the error between them is lower than the 1% , this 
confirms the reliability of the new method based on fractional derivatives.  

In the investigated time/temperature combination, the vertical displacement time history of the 
Ionomer does not show particularly strong viscoelastic effects because the interlayer is very stiff (at 
higher temperatures become visible), and its relaxation curve is different from the Stiff PVB’s that 
present a big drop in the trend. When the Ionomer is used as interlayer, the vertical displacement 
value is close to the monolithic limit (6.1 mm) and that underlines how this material gives stiffness to 
the structure comparable to a monolithic slab as shown in Figure 10b.  A different behaviour of the 
vertical displacement time history is presented when the Stiff PVB is used as interlayer. From Figure 1 
it is evident how the stiffness of this material diminishes in time in contrast to Ionomer and that aspect 
affects the response of the beam to a load, indeed from Figure 10a it is evident how the vertical 
displacement of the beam increases in time passing from a value close to the monolithic limit (“Glassy 
region”) to a value that tends to the layered limit 32 mm (“Viscous Flow”). Stiff PVB is an interlayer 
that don’t guarantee a constant stiffness of the layered glass beam for a long observation period, 
instead with Ionomer the structure has a behaviour comparable to a monolithic beam, for the 
investigated time/temperature combination. 

 

Fig. 10: Vertical displacement at the beam mid span obtained with the L1 approximation of the fractional derivatives 
indicated with the dotted line and with Abaqus indicated with the asterisks. The solution is obtained for the two types of 

interlayers:  Stiff PVB (a) and Ionomer (b), all tested at 20o C. 
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4.3. Convergence analysis 

Figure 11 shows the convergence analysis for the solution of the fractional differential equation using 
the two materials as interlayer. Here, the number of time steps is varied and the difference in the 
solutions evaluated, the convergence is achieved when such difference becomes less than a target 
value, in our case we can see that, for Stiff PVB, the solution does not significantly vary if it is calculated 
with 200 time steps, instead if Ionomer is used, which is stiffer than the previous material, the 
convergence is reached with 50 time steps. This analysis confirms that the greater the stiffness of the 
material, the lower the number of time steps required to achieve convergence.  

 

Fig. 11: Convergence analysis for the long creep solution obtained through the L1 formula for the two different types of 
interlayers; Stiff PVB (a) and Ionomer (b), all tested at 20o C. 

4.4. Comparison with experimental results   

The fractional model of the laminated glass beam is compared with the results of an experimental 
campaign from (X. Centelles, 2021). The experimental setup is the same proposed in the previous 
numerical analysis: a simply supported laminated glass beam, with the same geometry, under 
uniformly distributed load of 3 kN/m2. The relaxation function of Stiff PVB, calculated in the 
experimental campaign, is interpolated with piecewise function of power laws as for the curves 
proposed in this article and the parameters are shown in Table 3, instead the coefficient for Ionomer 
is the same reported in Table 1. The Stiff PVB’s parameters, also reported in (L. Viviani M. D., 2023) for 
both materials, are slightly different from those in Table 1, because they are calculated for a different 
time interval and at a different temperature. 

Table 3: Coefficients that define the power-law approximation for the material Stiff PVB from the curve presented in (X. 
Centelles, 2021) at the temperature of 23o C. 

Stiff PVB 

𝐶𝐶𝛼𝛼1
 [𝑀𝑀𝑀𝑀𝑀𝑀 𝑠𝑠𝛼𝛼1 ] 

𝛼𝛼1 

397.97 

0.252 

𝐶𝐶𝛼𝛼2
 [𝑀𝑀𝑀𝑀𝑀𝑀 𝑠𝑠𝛼𝛼2 ] 

𝛼𝛼2    

4273.78 

0.585 

𝐶𝐶𝛼𝛼3
 [𝑀𝑀𝑀𝑀𝑀𝑀 𝑠𝑠𝛼𝛼3 ] 

𝛼𝛼3  

3.01 

0.087 
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The solution reported in Figure 12 is calculated for an observation time around 107 seconds (four 
months). The numerical results match the experimental points with a good accuracy and the error 
between them is lower than 3%. Even in this case it is possible to observe the bigger stiffness that an 
interlayer as Ionomer can bring to the laminated glass structure, indeed also in this case, the maximum 
vertical displacement settles on the monolithic limit, instead using Stiff PVB the deformation 
monotonically increases in time due to a more pronounced decrease in stiffness in the material. This 
comparison prove how fractional formulation in the constitutive equation of the polymeric interlayer 
can well approximate its viscoelastic properties and allows to simulate experimental tests with a good 
precision. 

 

Fig. 12: Vertical displacement at the beam mid span obtained with the L1 approximation of the fractional derivatives 
indicated with the dotted line and with experimental results from  (X. Centelles, 2021). The solution is obtained for the two 

types of interlayers: Stiff PVB (a) and Ionomer (b), all tested at 23o C. 

5. Conclusion 

A numerical algorithm has been considered to calculate the long-term rheological response of 
laminated glass under varying applied loads, which supports a non-uniform discretization of the time 
interval of observation. This applies to viscoelastic models that are mathematically described via 
fractional calculus and are particularly efficient when the relaxation curve of the polymeric interlayer 
is represented by a power law, or continuously connected branches of power laws, as is the case of 
most commercial materials used in laminate glass. A time mesh of points spaced in geometric 
progression has been proposed, which corresponds to constant intervals in a logarithmic 
representation of time because, for a long observation period (109 seconds), no part of the relaxation 
curve is neglected. This choice fits with the assumed character of the relaxation function which, in a 
bi-logarithmic representation, corresponds to a polyline. The fractional derivative has been 
numerically approximated through the L1 formula because it supports a non-uniform time 
discretization, contrary to the classical Grünwald-Letnikov method. This new mathematical approach 
has been applied to the classical system of a simply supported laminated glass beam under uniformly 
distributed load. The vertical displacement trends for two different interlayer materials: Stiff PVB and 
Ionomer have been calculated. 

This study confirms the reliability of the new approach because the numerical results has been 
compared with an ABAQUS simulation and the error between them is lower than 1%. It has also 
demonstrated the difference between the two interlayers studied: Ionomer is stiffer than Stiff PVB and 
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this strongly affects the vertical displacements of the beam, indeed with the first material the solution 
almost coincides with the monolithic limit for the entire observation period, instead with the second 
material this happen only at an early stage and then the vertical displacement tends to the layered 
limit. This behaviour is expected from the relaxation curves of the two materials that shows how the 
Ionomer remains stiffer than the Stiff PVB for a longer period. The model is also validated with 
experimental results and the comparison show how the numerical solution can well describe the 
viscoelastic behaviour of the polymeric interlayer. 
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