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Abstract 

The stability of monolithic glass beams is reasonably well defined; as an elastic material it behaves in 
a similar manner to other elastic materials such as steel, for which there are many equations of 
different forms which give similar results. Special care is required for continuous restraint to the 
tension flange. Equations presented in Australian Standard AS1288 Glass in Buildings – Selection and 
Installation have been used successfully for many years for monolithic fins when used with the strength 
model of AS1288 but require a more comprehensive approach when using laminated fins and/or 
strength models that allow higher levels of stress. A review of equations for cantilevers results in a 
wider range of approaches with significant variance between the outcomes of various published steel 
and glass standards. AS1288 has been used as the default standard for stability of glass fins, however 
for cantilevers it appears to have a misprint which has existed for decades. This paper presents 
strategies for determining the moment capacity of beams and cantilevers made of laminated glass 
with continuous flexible buckling restraints, such as structural silicone, which have initial imperfections 
and a known design strength capacity. Where multiple wave lengths form, the warping stiffness may 
contribute and formulations for rectangles are presented. The accuracy and validity of the approach is 
also assessed by means of comparisons with the outcomes of Finite Element numerical analyses. 
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1. Introduction 

The use of laminated glass fins constitutes a recently emerging trend in the façade industry. In modern 
buildings, glass fins are used to support glazed façades and enhance their rigidity, and as supports for 
glazed roofs. As glass is brittle and can be damaged by non-design load events (e.g. impact), lamination 
is used to ensure a fail-safe response when one ply breaks. Due to their high slenderness, the design 
of glass fins requires particular attention to instability phenomena.  

Currently, the main complete standard in this regard is the Australian Standard AS1288  (Appendix C), 
containing stability options for unrestrained monolithic beams (fins), beams with intermediate 
restraints, cantilevers, and continuously restrained beams. The continuously restrained beam case is 
perhaps the most common. The source of the formula for the continuously restrained case is not 
recorded in AS1288 and reputedly has origins in rectangular timber joist equations, which assume a 
rigid fixity to the diaphragm providing the restraint. However, when the restraint is flexible, such as in 
the common case where structural silicone is used, the formula can be non-conservative due to 
reduction of the elastic critical buckling load and development of secondary stresses from minor axis 
bending. The magnitude of the second-order stress is a function of the level of imperfection present 
in the construction. The AS1288 model generally provides adequate outcomes when used in 
combination with the design strength levels in AS1288, because the design stress limit for fins is 
relatively conservative, employing a glass type factor of 2.5 for fully tempered glass, instead of the 
value 4.0 in ASTM E1300, where glass type factor is the ratio of design capacity relative to that of 
annealed glass. If using higher stresses for design, without the ‘buffer’ of lower design stresses in 
AS1288, a more accurate formula for the stability is required and second-order effects need to be 
taken into consideration. 

For cantilever beams, the equations for the Euler elastic critical moment was examined from multiple 
standards and sources, including AS 1288 Glass in Buildings, AISC 360 Specification for Structural Steel 
Buildings, NCCI SN006a-EN-EU Elastic Critical Moments of Cantilevers (reflecting Eurocode 3), AS 4100 
Steel Structures, Timoshenko and Gere Theory of Elastic Stability (1956), Nethercott and Trahair (1976) 
and NASA N.A.C.A. Technical Note No 601 (Dumont,·1937). From these various sources the relationship 
between the ‘g factors’ as presented in AS1288 and formulas presented elsewhere is clarified, which 
allows broader comparison, and a summary of the most useful sources is presented and discussed.  

Kala (Kala, 2013) provides a derivation of moment capacity of beams for a given stress level and level 
of imperfection, geometric parameters, and elastic buckling moment. The derivation only holds true 
for the elastic range, but glass is elastic to fracture and, as rectangular fins are doubly symmetric, the 
compression limits and tension limits are the same magnitude (axial loads are not considered at this 
point). Finite element modelling has found the equation to have good agreement for the tension-
controlled stress failure. 

Bedon et al. (2015) demonstrate that a wavelength approach can be taken to glass fins with continuous 
elastic lateral restraints. The approach assumes the critical half-wavelength must be the length of 
member divided by an integer and requires testing for a number of integers to find the most critical 
(minimum) one. Bedon (2021) proposes separate equations for tension flange and compression flange 
with flexible continuous restraint. However, by selecting a suitable sign convention, the two equations 
can be merged in a unique approach, and further elaborated to capture the actual bending capacity, 
compared to rigid mechanical restraints (Bedon, 2021). 
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Laminated glass, composed of two or more glass plies bonded by polymeric interlayer(s), further adds 
to the complexity of the problem. The flexural and torsional response of this kind of composite is 
usually modelled by means of “effective thickness” methods, consisting in the definition of a 
monolithic “equivalent” element, of appropriate thickness, having the same flexural/torsional 
properties of the considered laminate. The effective thickness value depends on the mechanical and 
geometrical properties of both glass plies and interlayer(s), as well as by loading and boundary 
conditions. The Wölfel-Bennison effective thickness model in ASTM E1300 only correctly predicts the 
stiffness of simply supported beams under uniformly distributed load, with important inputs including: 
the length of the member, thickness of the interlayer and shear stiffness of the interlayer for a given 
temperature and duration. However, this model, developed for laminated glass elements under 
bending, significantly over-predicts the torsional stiffness of the glass fin and is non-conservative for 
stability calculations. Galuppi et al. (Galuppi, et al. 2013, 2014 and/or 2020) have developed an 
Enhanced Effective Thickness approach which includes additional parameters for torsional effective 
thickness that are strongly influenced by the width of the fin.  

The proposed method predicts a more realistic capacity of glass beams and fins utilizing a combination 
of effective section properties (including torsional stiffnesses), a stability model (that accounts for 
flexibility of the restraint), and a method that considers second-order stresses (due to imperfections) 
in combination with the available design strength. Analytical predictions are validated towards Finite 
Element (FE) numerical analyses carried out in ABAQUS (Simulia, 2022) for a selection of geometrical 
and mechanical configurations. 

2. Glossary and Conventions 

Description Conventional US 
Symbol  

As used in paper 

(Alt symbols not used in 
brackets) 

Conventional EU 
Symbol 

(and some prior 
papers) 

Conventional AU 
Symbol 

(AS 1288) 

Axis system 

Width 

Height 

Length 

 

 
x 
y 
z 
 

 
y 
z 
x 
 

 
x 
y 
z 
 

Breadth of beam B  b 

Length of beam L  L, Lo L 

Thickness: overall, plies h h t 
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Effective thickness 

Bending stiffness 

Bending stress 

Torsional stiffness 

Torsional stress 

ℎ�𝑤𝑤 
ℎ�𝑖𝑖;𝜎𝜎  

ℎ�𝑤𝑤;𝜏𝜏 

ℎ�𝑖𝑖;𝜏𝜏 

 ℎ𝑒𝑒𝑒𝑒,𝑤𝑤 or, ℎ𝑒𝑒𝑒𝑒𝑒𝑒 
ℎ𝑒𝑒𝑒𝑒,𝑖𝑖,𝜎𝜎  

 

 

Young’s Modulus - Glass Eg E E 

Shear Modulus 

Glass 

Interlayer 

Structural Silicone 

 
Gg 

Gint 

Gss 

G G 

Moment of Inertia  

(Second moment of area) 

Major axis 

Minor axis 

Per unit width – includes prime ’ 

Effective composite 

 
 

Ix 

Iy 

I’ 
𝐼𝐼𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒  

 
 

Iy 

Iz,   Jz 

 
 

Ix 

Iy 

Elastic Section Modulus 

Major axis 

Minor axis 

 
Sx 

Sy 

 
Wy 

Wz 

 
Zx 

Zy 

Torsional Modulus 

Per unit width – includes prime ’ 

Effective composite 

J 
J’ 

𝐽𝐽𝑒𝑒𝑒𝑒𝑒𝑒  

It,   Jt J 

Warping Constant Iw  (Cw) Iw Iw 

Load application point above shear 
center 

ya zg yh 

Lateral restraint spring location above 
shear center 

ym zm  

Elastic (Euler) Critical Moment Mcr Mcr Mcr 

Reduced Elastic Critical Moment M*cr   

Elastic Critical Buckling Moment 
modification factors (meaning varies) 

Cb, C1, C2 C1, C2 g1, g2, g3 

Elastic Critical Buckling Axial Load Ncry Pz  

Spring stiffness of continuous restraint - 
lateral 

kx ky Not used,  

assumes rigid 

Imperfection auo avo  

Separation of Centroids H, H1, H2… H  

Design tensile capacity of glass F’g fg,d ΦRu 

Shear coupling coefficient 

   Bending 

   Torsion 

 
ηb 

ηt 

 
η 

 

Lamination geometry coefficient Κ, Κb, Κt   
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Loading and boundary coefficient 

Bending 

Torsion 

 
ψb 

ψt 

 
ψ 

 

Material capacity reduction factor Φ 1/γ Φ 

3.  Method for Analysis of Glass Beams and Cantilevers 

The method considers multiple components: 

• The (Euler) elastic critical moment as a function of support conditions and load profile. 
• The effective thickness of a member, taking into consideration the support conditions, load profile 

and buckling profile. 
• The effects of continuous elastic restraint on the buckling profile and elastic critical buckling 

moment. 
• The effects of imperfections which are amplified by applied loads. 

4. Elastic Critical Buckling of Unrestrained Members   

 Elastic Buckling Formulas for Unrestrained Beams 

There are many available forms of the critical elastic buckling formula (also known as Euler Buckling 
Moment). The form used by the European steel code (EN 1993-1-1) was selected as a basis because it 
takes into consideration the position of load application and the moment profile and has a broad range 
of supporting documents. While US engineers may be more familiar with the AISC (ANSI/AISC 360) 
format with a Cb coefficient, accounting for the moment profile, the lack of a provision for load position 
was considered a disadvantage for slender rectangular fins without flanges and without torsional 
restraint at the lateral restraint, so it was not selected. The equation is re-written using the adopted 
axis convention. 

 𝑀𝑀𝑐𝑐𝑐𝑐 = 𝐶𝐶1
𝜋𝜋2𝐸𝐸𝐼𝐼𝑦𝑦

(𝑘𝑘𝑘𝑘)2 ��� 𝑘𝑘
𝑘𝑘𝑤𝑤

�
2 𝐼𝐼𝑤𝑤

𝐽𝐽
+ (𝑘𝑘𝑘𝑘)2

𝜋𝜋2𝐸𝐸𝐼𝐼𝑦𝑦
+ (𝐶𝐶2𝑦𝑦𝑎𝑎)2 − 𝐶𝐶2𝑦𝑦𝑎𝑎� (1) 

where: 

C1 is a coefficient due to the moment profile (Table 1) (Note: C1 is similar to Cb coefficient (+/- 
16% for cases in Table 1) as defined by the AISC standard (ANSI/AISC 360); 

 C2 is a coefficient due to the moment profile (Table 1); 

 Eg is the Young’s Modulus of glass; 

Gg is the Shear Modulus of glass; 

 Iy is the second moment of area about the minor axis; 

 L is the distance between points of bracing of lateral torsional buckling; 

 J is the Saint Venant’s Torsional Stiffness, evaluated as 

J = (B.h3/3) (1-0.63 h/B)   (The latter term allowing for beams that are not thin (AS 1288, 2021),  
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where 

 B is the width of the beam, 

 h is the thickness of the beam, 

ya is the position of the load above the shear center when the load is acting toward the shear 
center, i.e. ya is positive when the load is applied on the compression side of the beam. 

k and kw are effective length factors. (The factor k refers to end rotation on plan. It is analogous to the 
ratio of the buckling length to the system length for a compression member. k should be taken as not 
less than 1 unless less than 1 can be justified. The factor kw refers to end warping. Unless special 
provision for warping fixity is made, kw should be taken as 1. (NCCI SN-003-EN-EU)  

Table 1: Reference values for C1 and C2. 

Bending Moment C1 C2 

Uniform (Constant) 1 0 

Linear (zero at midspan) 2.7 0 

Parabolic (simply supported, zero at both extremities) 1.127 0.454 

Parabolic (fixed end) 2.578 1.554 

Triangular (central point load, simply supported) 1.348 0.630 

Triangular (central point load, fixed end) 1,683 1.645 

For additional coefficients, including beam segments or half-wave moment profile,  
reference can be made to NCCI SN-003-EN-EU. 

4.1.1. Elastic Critical Buckling Moment for Monolithic Beams 

As glass beams are typically un-flanged and the buckling length is “long”, then the warping term is 
small and generally ignored, reducing the equation to the form shown in equation (2). (For 
continuously restrained beams with short half-wave lengths the warping stiffness can become 
appreciable, and the warping component is further discussed in that section.) 

For monolithic glass beams, the critical buckling moment may be evaluated as 

MCR = C1 ∙ �π2𝐸𝐸g𝐼𝐼y�
𝑘𝑘2 ∙ ��(𝐶𝐶2𝑦𝑦𝑎𝑎)2 + �𝐺𝐺𝑔𝑔𝐽𝐽𝑘𝑘2�

𝜋𝜋2𝐸𝐸𝑔𝑔𝐼𝐼𝑦𝑦
− 𝐶𝐶2𝑦𝑦𝑎𝑎� (2) 

4.1.2. Elastic Critical Buckling Moment for Laminated Beams 

For laminated glass beams, equation (2) takes the form: 

𝑀𝑀𝑐𝑐𝑐𝑐 = 𝐶𝐶1
𝜋𝜋2𝐸𝐸𝑔𝑔𝐼𝐼𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒

𝑘𝑘2 ��(𝐶𝐶2𝑦𝑦𝑎𝑎)2 + 𝐺𝐺𝑔𝑔𝐽𝐽𝑒𝑒𝑒𝑒𝑒𝑒𝑘𝑘2

𝜋𝜋2𝐸𝐸𝑔𝑔𝐼𝐼𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒
− 𝐶𝐶2𝑦𝑦𝑎𝑎� (3) 

where the subscript “eff” refers to the effective stiffness. 

The Enhanced Effective Thickness (EET) method proposed by Galuppi et al. can be utilized to calculate 
the laminated stiffness for both lateral stiffness (Galuppi et al., 2014 and Galuppi et al. 2013), torsional 
stiffness (Galuppi et al., 2020), and elements undergoing compressive buckling (D’Ambrosio et al., 
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2020). The EET equations are here reformatted, showing that they can take a common form for 1-
dimensional (beam) bending and torsion. This may be done by introducing a term Κ, defined in this 
paper for each of the characteristic stiffnesses being analyzed. Some formulas and derivations from 
the papers mentioned above for bending are included for completeness. 

 Elastic Buckling Formulas for Unrestrained Cantilevers 

The most commonly applied formula for cantilever glass fins is from AS1288 Appendix C, which is of 
the form: 

𝑀𝑀𝐶𝐶𝐶𝐶 = (𝑔𝑔2/𝐿𝐿𝑎𝑎𝑦𝑦)�(𝐸𝐸𝐼𝐼)𝑦𝑦(𝐺𝐺𝐽𝐽)�
1
2 �1 − 𝑔𝑔3( 𝑦𝑦ℎ

𝑘𝑘𝑎𝑎𝑦𝑦
)[(𝐸𝐸𝐼𝐼)𝑦𝑦/(𝐺𝐺𝐽𝐽)]1/2� (4) 

(Note that the division sign is missing between the EI/GJ terms in the 2021 printing of AS 1288) 

Table 2: Comparison of stability factors. 

Loading Slenderness factors (AS1288) Slenderness factors (converted EU) 

 g2 g3 C1 C2 

for a point load on the cantilever 4.0 
2.0 

(Corrected 1.0) 
1.25 0.318 

For a distributed load on a cantilever 6.4 2.0 2.037* 0.637 

*AS4100 suggests 2.25 for loads applied at the centroid. 

However, the line for the point load on a cantilever is contradicted by Timoshenko and Gere which 
states: 

𝑃𝑃𝐶𝐶𝐶𝐶 =
4.013�𝐸𝐸𝐼𝐼𝜂𝜂𝐶𝐶

𝑙𝑙2 �1 − 𝑎𝑎
𝑙𝑙 �𝐸𝐸𝐼𝐼𝜂𝜂

𝐶𝐶 � (5) 

Where C = GJ and a is the height of the point load above the centroid. 

Noting that 𝑀𝑀𝐶𝐶𝐶𝐶  =  𝑃𝑃𝐶𝐶𝐶𝐶  ∗  𝑙𝑙 , we can see that the g3 term for a point load should be 1.  Finite element 
modelling spot checks confirms that the Timoshenko and Gere presentation is the correct one. 

For a distributed load Timoshenko and Gere only present the case for the load at the centroid. 

(𝑞𝑞𝑙𝑙)𝐶𝐶𝐶𝐶 =
12.85�𝐸𝐸𝐼𝐼𝜂𝜂𝐶𝐶

𝑙𝑙2  (6) 

Noting that  𝑀𝑀𝐶𝐶𝐶𝐶  =  (𝑞𝑞𝑙𝑙)𝐶𝐶𝐶𝐶  ∗  𝑙𝑙/2, we can see a direct correlation and the g3 factor appears to behave 
sufficiently accurately in spot checks.   

For comparison to the equation of the format in (2), moving one of the π terms into the brackets, 

MCR = C1 ∙ �π𝐸𝐸g𝐼𝐼y�
𝑘𝑘2 ∙ ��(𝐶𝐶2𝜋𝜋𝑦𝑦𝑎𝑎)2 + �𝐺𝐺𝑔𝑔𝐽𝐽𝑘𝑘2�

𝐸𝐸𝑔𝑔𝐼𝐼𝑦𝑦
− 𝐶𝐶2𝜋𝜋𝑦𝑦𝑎𝑎� (7) 
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And noting that it can be demonstrated that (𝐶𝐶2𝜋𝜋𝑦𝑦𝑎𝑎)2is small relative to  
�𝐺𝐺𝑔𝑔𝐽𝐽𝑘𝑘2�

𝐸𝐸𝑔𝑔𝐼𝐼𝑦𝑦
 , then the forms of 

the stability equations can be related by g2 = C1π and g3 = C2π.  As C1 also relates to the moment 
modification factor relative a beam with constant moment (also referred to as Cb in AISC 360 and the 
Aluminum Design Manual and αm in AS4100), the format in (2) is now more customary, it is presented 
in further formulations. 

NASA document N.A.C.A Technical Note No 601 (Dumont, 1937) presents the factor K which is the 
same as “g2” in AS1288 and C1*π, in the customary European formatting for solid rectangular beams. 
(Note K’ is a similar relation to buckling stress and is not related to g3.) 

 

Fig. 1: Stability coefficients for various boundary conditions. 
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For glass design, the more common usage is to cantilever glass fins from the ceiling with a combination 
of point load at the tip and distributed load on the length. In this instance the load is restrained laterally 
which strongly influences the stability. Here the work by Trahair incorporated in AS 4100 is particularly 
useful and as the load mechanism provides restraint and cannot move laterally, the C2  (and hence also 
g3) terms should be considered to be zero. 

Table 3 Cantilever stability coefficients 

Loading 
Slenderness factors 

(AS1288) 
Slenderness factors  

(converted EU) 

 g2 g3 C1 C2 

For a point load on the cantilever with end restrained 5.5 - 1.75 - 

For a distributed load on a cantilever 11 - 3.5 - 

 

While spot checks for UDL of AS1288 for distributed load on cantilevers appears to have reasonable 
agreement, SN006a-EN-EU suggests a more complex interaction with g3, or suggests g3 = 0 for Iww = 0.  
Nethercott and Rockney also suggest g3=0.  While the warping coefficient, Iww is often ignored for glass 
fins due to the slenderness ratio, it is not zero. It is also worth noting for laminated glass fins the 
assumption of thin-walled sections where the Saint-Venant torsion constant J = b.t3/3 can be non-
conservative. Comparison of different methods as a function of Iww is well presented in depth by Kraus, 
Crisan and Wittor (2021) in Stability Study of Cantilever-Beams – Numerical Analysis and Analytical 
Calculation (LTB). To make better use of the table in NCCI it is important to have accurate torsional 
properties. 
 

 

Fig. 2: Comparison of cantilever stability approaches, from Kraus, Crisan and Wittor (2021).  
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 Torsion Constants for Rectangular Shapes 

The Saint Venant torsion constant in the most accurate form is an infinite series. 

𝐽𝐽 = 1
3

 𝑎𝑎3𝑏𝑏 �1 − 192
𝜋𝜋5

𝑎𝑎
𝑏𝑏

 ∑ 1
𝑛𝑛5 tanh 𝑛𝑛𝜋𝜋𝑏𝑏

2𝑎𝑎
∞
𝑛𝑛=1,3,5, � (8) 

where:  a is the minor dimension and b is the major dimension. 

There are a variety of simplifications: the simplest and most common is “thin-walled” approximation 
for a<<b 

𝐽𝐽 = 1
3

 𝑎𝑎3𝑏𝑏 (9) 

The version in AS 1288 is: 

𝐽𝐽 = 1
3

 𝑎𝑎3𝑏𝑏 �1 − 0.63 �𝑎𝑎
𝑏𝑏

�� (10) 

 

 

Fig. 3a & 3b: Comparison of torsion constant (J) formulations. 
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For monolithic fins with common aspect ratios of 20:1 (a/b = 0.05) the thin-walled is still valid, however 
for laminated assemblies of greater thickness the deviation may become significant, in which case the 
version in AS 1288 is adequately accurate (<0.5% deviation) for aspect ratios of 2:1 or greater. 

For the warping constant, the authors were unable to find a closed form solution for rectangles of non-
negligible thickness. For I beams, where the thickness of the flange is small relative to the separation 
of the flange centroid from the shear center, Iww is well defined by using the centerline approximation 
where 

𝐼𝐼𝑤𝑤𝑤𝑤 ≅ ∑ 𝐼𝐼𝑦𝑦.𝑒𝑒𝑙𝑙 . ŷ𝑒𝑒𝑙𝑙
2  ≅  𝐼𝐼𝑦𝑦.𝑑𝑑𝑒𝑒𝑙𝑙

2

4  (11) 

Where ŷ𝑒𝑒𝑙𝑙   is the distance from the centroid of the flange of the I-beam from the shear center and 
𝑑𝑑𝑒𝑒𝑙𝑙

 is the distance between the centroids of the flanges (or the height of the beam less a flange 
thickness) This approach is also valid for the layered state laminated assembly with the assumption 
that all plies rotate about a common shear center. 

For rectangular sections the relationship between Iww is more complex and as the section becomes 
more square, symmetry dictates that all corners have to have the same warping function, hence must 
be zero.  The authors were unable find a closed form solution for Iww, however by conducting multiple 
calculations using the membrane analogy, calculation of Iww in the section property of Strand7 (Strauss 
7 in Europe), a suitable curve fit can be formed. 

𝐼𝐼𝑤𝑤𝑤𝑤 = 𝐵𝐵3𝐷𝐷3

144
[1 − (2.4649 𝑥𝑥4 − 6.9103 𝑥𝑥3 + 5.4827 𝑥𝑥2 − 0.0567 𝑥𝑥)] (12) 

where 𝑥𝑥 = 𝑎𝑎/𝑏𝑏,  a is the minor dimension and b is the major dimension. 

The above equation has an error less than 1% across the range. 

 

Fig. 4: Correction Factor kww vs a/b, where Iww = 1/144 a 3b3 (1-kww). 
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For most practical glass members with aspect ratios of 5:1 or greater, this is approximated well (<3% 
error at 5:1 and for 8:1 or greater there is < 1% error). 

𝐼𝐼𝑤𝑤𝑤𝑤 = 𝐵𝐵3𝐷𝐷3

144
�1 − 4.5 �𝐵𝐵

𝐷𝐷
�

2
� (13) 

 

Fig. 5: Simplified Iww for slender beams. 

(Note that the approximation of Iww = Iyy * D2 /4 that is common for I-beams and is sometimes also 
applied to rectangles equates to a correction factor of 48/144 = 0.33, so is conservative for warping 
stiffness for a/b < 0.3.) 

 Summary of Stability Factors for Elastic Critical Buckling 

Table 4: Values for C1 and C2 - Beams 

Bending Moment Minor axis rotational fixity (ry) C1 C2 

Uniform (Constant) 
Free 

Fixed 

1 

2 
0 

Linear (zero at midspan) 
Free 

Fixed 
2.7 0 

Parabolic (simply supported, zero at both extremities) 
Free 

Fixed 

1.127 

1.942 

0.454 

0.573 

Parabolic (fixed end) 
Free 

Fixed 

1.301 

1.719 

1.554 

1.655 

Triangular (central point load, simply supported) 
Free 

Fixed 

1.348 

2.132 

0.630 

0.828 

Triangular (central point load, fixed end) 
Free 

Fixed 

1,683 

2.069 

1.645 

1.687 
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For additional coefficients for beams reference: NCCI SN-003-EN-EU 

Table 5: Values for C1 and C2 - Cantilevers 

Bending Moment Profile Free end lateral fixity (dx) C1 C2 

Cantilever Point load at end 
Free 

Fixed 

1.27 

1.75 

0.318* 

0 

Cantilever uniform load 
Free 

Fixed 

2.040 

3.500 

0.637 

0 

For additional coefficients for cantilevers reference: NCCI SN-006-EN-EU 

NOTES:  

For tapered cantilevers further information is available in Timoshenko and Gere (1956)  

C1 is the same as g2/π in AS1288 and C2 is the same as g3/π in AS1288.  

* Corrections to coefficients in AS1288 are based on the work of Timoshenko and Gere and as tested against finite element models. 

The coefficients for cantilevers with lateral end restraint is based on AS4100 reflecting the work of Trahair. 

5. Enhanced Effective Thickness (EET) – Bending  

Depending on the degree of shear coupling of the glass plies through the interlayer, the out-of-plane 
bending response of a laminated glass element is intermediate between that of free sliding plies 
(layered behavior) and that of a glass monolith (monolithic behavior) of the total thickness. In 
particular, by considering a laminated glass element, of unit width, composed of N glass plies: 

• For the layered behavior, the moment of inertia with respect to the minor axis is: 

𝐼𝐼′
𝑝𝑝𝑙𝑙𝑖𝑖𝑒𝑒𝑝𝑝 = ∑ 𝐼𝐼′

𝑖𝑖
𝑁𝑁
𝑖𝑖=1   (14) 

where:  I’i = hi 
3/12 [mm4/mm (or in4/in)] is the moment of inertia per unit width of the i-th 

glass ply [mm4/mm] (notation of Figure 1).  (The “prime” mark indicates “per unit width”.) 
Note that, while metric units are presented here, any consistent unit system can be used.  

• For the monolithic limit, the moment of inertia is: 

𝐼𝐼′
𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑙𝑙 = 𝐼𝐼′𝑝𝑝𝑙𝑙𝑖𝑖𝑒𝑒𝑝𝑝 +  𝐼𝐼′𝑐𝑐𝑡𝑡𝑐𝑐𝑝𝑝 (15) 

Where:   

𝐼𝐼′
𝑐𝑐𝑡𝑡𝑐𝑐𝑝𝑝 = � ℎ𝑖𝑖𝑑𝑑𝑖𝑖

2𝑁𝑁
𝑖𝑖=𝑖𝑖  (16) 

and di  [mm] is the distance of the centroid of the i-th ply from the centroid of the cross-section 
of the laminated package (Figure 6), while hi is the area for a strip of unit width (B = 1). 

Also, Ai =B hi /1  [mm2/mm] = hi [mm2/mm] is the area per unit width of the cross-section of the i-th 
plate, i.e. the ply thickness of the i-th  ply.  
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Fig. 6: Geometry of a laminated glass element (cross-sectional view). 

In Figure 6, hi (i=1..N) is the thickness of the i-th ply of glass, hi (i=1..N) is the thickness of the i-th 
interlayer, yi is the position of the centroid of the i-th ply, Yc is the position of the centroid of the glass 
plies and di is the distance (with sign) from the overall centroid (Yc) to the centroid of the i-th ply. B is 
the width of the assembly. 

The distances di may be evaluated as: 

𝑑𝑑𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝑌𝑌𝑐𝑐, where 𝑌𝑌𝑐𝑐 = ∑ 𝑦𝑦𝑖𝑖
𝑁𝑁
𝑖𝑖=1 ℎ𝑖𝑖 
∑ ℎ𝑖𝑖

𝑁𝑁
𝑖𝑖=1

 (17) 

For laminated glass beams, the EET method defines the equivalent moment of inertia as the harmonic 
mean of the moment of inertia of the cross-section at the monolithic and layered limit, with the 
harmonic mean weighted using a shear transfer coefficient, accounting for the degree of coupling 
between glass plies due to the presence of the interlayer: For laminated glass beams, the EET method 
defines the equivalent moment of inertia as the harmonic mean of the moment of inertia of the cross-
section at the monolithic and layered limit, with the harmonic mean weighted using a shear transfer 
coefficient, accounting for the degree of coupling between glass plies due to the presence of the 
interlayer: 𝐼𝐼𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒  is the effective moment of inertia of the laminated package, assuming an intermediate 

value between Itotal and Iplies. 

The effective moment of inertia may be written equivalently as: 

1
𝐼𝐼′𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒

= 𝜂𝜂𝑏𝑏
𝐼𝐼′𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑙𝑙

+ 1−𝜂𝜂𝑏𝑏
𝐼𝐼′𝑝𝑝𝑙𝑙𝑖𝑖𝑒𝑒𝑝𝑝

 (18) 

𝐼𝐼′
𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒 = 1

� 𝜂𝜂𝑏𝑏
𝐼𝐼′𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑙𝑙

+ 1−𝜂𝜂𝑏𝑏
𝐼𝐼′𝑝𝑝𝑙𝑙𝑖𝑖𝑒𝑒𝑝𝑝

�
 (19) 

where 𝜂𝜂𝑏𝑏 is a non-dimensional coefficient (suffix b refers to “bending”) depending on the 
geometry of the beam, on the loading and boundary conditions, and on the mechanical 
properties of glass and interlayer. The value of 𝜂𝜂𝑏𝑏  ranges from 0 (layered limit) and 1 
(monolithic limit). 

  

https://doi.org/10.47982/cgc.9.599
https://doi.org/10.47982/cgc.9


15 / 33 Article 10.47982/cgc.9.599 Challenging Glass Conference Proceedings – Volume 9 – June 2024 

5.1.1. Shear Coupling Coefficient for Beams  

The shear coupling coefficient ηb is a function of the geometry of the laminate and the properties of 
the interlayer (Galuppi et al. 2014)] 

𝜂𝜂𝑏𝑏 = 1

1+
𝐸𝐸𝑔𝑔.𝐼𝐼′𝑝𝑝𝑙𝑙𝑖𝑖𝑒𝑒𝑝𝑝.𝐼𝐼′𝑐𝑐𝑡𝑡𝑐𝑐𝑝𝑝
𝐺𝐺int�𝐼𝐼′total�.𝛫𝛫𝑏𝑏

𝛹𝛹
 (20) 

where: 

Eg is the Young’s modulus of glass; 

Gint is the relaxation shear modulus of the interlayer for the applicable temperature and 
duration; 

Κb  is a function of the glass and interlayer geometry defined as: 

𝛫𝛫𝑏𝑏 = ∑  𝑁𝑁−1
𝑖𝑖=1  (𝑦𝑦𝑖𝑖+1 − 𝑦𝑦𝑖𝑖)2

ℎ𝑖𝑖𝑛𝑛𝑡𝑡,𝑖𝑖
�  =   ∑ 𝐻𝐻𝑖𝑖

2

ℎ𝑖𝑖𝑛𝑛𝑡𝑡,𝑖𝑖
�𝑁𝑁−1

𝑖𝑖=1  (21) 

The coefficient ψ ,  appearing in eq. 20, is a function of the beam length L, the loading profile and the 
boundary and loading, tabulated in Table 6 for the case of interest.  For lateral-torsional buckling**1   
use π2/L2 , as in Nizich (2022).  

Table 6: Laminated Beams Boundary Conditions: values of coefficient Ψ. 

Loading and boundary conditions ψ 

 

168
17 𝐿𝐿2 

 

𝜋𝜋2

𝐿𝐿2  

  

𝑛𝑛𝐶𝐶
2𝜋𝜋2

𝐿𝐿2  

 

NOTE: Refer D’Ambrosio et al. (2020) and Galuppi et al. (2013) for different loading and boundary conditions. 

  

 
 
*1 Note for systems with multiple half-wavelengths, use the distance between points of contraflexure as “L”. For not-

restrained laminated glass fins subjected to lateral-torsional buckling, the effective bending inertia 𝐼𝐼𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒  may be evaluated 
by using coefficient ψ=π2⁄a2, where a is the half wave-length, as per Table 6. As ψ will affect the effective thickness and may 
change nR, the solution may be iterative.  
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5.1.2. Deflection - Effective Thickness for Beams in Bending 

The deflection-effective thickness is defined as the thickness of the monolithic glass exhibiting the same 
maximum deflection of the considered laminated glass element under bending. Obviously, the 
deflection is inversely proportional to the moment of inertia and, therefore, to the cube of the 
thickness of the equivalent monolith. The deflection-effective thickness is then equal to: 

ℎ�𝑤𝑤 =  �12. 𝐼𝐼′
𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒

3  (22) 

5.1.3. Stress - Effective Thickness for Beams in Bending 

The stress-effective thickness is defined as the thickness of monolithic glass exhibiting the same 
maximum stress in one of the plies of the considered laminated glass element. In general, one defines 
a stress-effective thickness for each glass ply. The stress-effective thickness of the i-th plate is given 
by:   

ℎ�𝑖𝑖;𝜎𝜎 = �
6

𝜂𝜂𝑏𝑏�𝑑𝑑𝑖𝑖�
 𝐼𝐼′𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑙𝑙

+
ℎ𝑖𝑖

2.𝐼𝐼′𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒

 (23) 

 Enhanced Effective Thickness – Torsion*   

5.2.1. Effective Torsional Stiffness 

Depending on the degree of shear coupling of the glass plies through the interlayer, the torsional 
response of a laminated glass element is intermediate between that of free sliding plies (layered 
behavior) and that of a monolith (monolithic behavior) of the total thickness. In particular, for a 
laminated glass element with unit width, composed of N plies of glass: 

• For the layered limit: 

𝐽𝐽′
𝑝𝑝𝑙𝑙𝑖𝑖𝑒𝑒𝑝𝑝 =  ∑ 𝐽𝐽′𝑖𝑖

𝑁𝑁
𝑖𝑖=1  =  1

3
� ℎ𝑖𝑖

3𝑁𝑁
𝑖𝑖=1  (24) 

where J’i = hi 3/3 [mm4/mm] is the torsional moment of inertia of the i-th glass ply per unit width 
[mm4/mm] and B is the width of the ply (notation of Figure 1). 

 
• For the monolithic limit 

𝐽𝐽′
𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑙𝑙 =  𝐽𝐽′

𝑝𝑝𝑙𝑙𝑖𝑖𝑒𝑒𝑝𝑝 + 4 𝐼𝐼′
𝑐𝑐𝑡𝑡𝑐𝑐𝑝𝑝 (25) 

𝐽𝐽′
𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑙𝑙 = 1

3
� �ℎ𝑖𝑖

3 + 12𝑑𝑑𝑖𝑖
2ℎ𝑖𝑖  �𝑁𝑁

𝑖𝑖=1 = � �ℎ𝑖𝑖
3

3
 �

𝑁𝑁

𝑖𝑖=1
+ 4 � 𝑑𝑑𝑖𝑖

2𝑁𝑁
𝑖𝑖=1 ℎ𝑖𝑖 (26) 

 

According to the Enhanced Effective Thickness approach for torsion (Galuppi et al., 2020), the effective 
torsional stiffness of the laminated element may be evaluated by considering: 

1
𝐽𝐽′

𝑒𝑒𝑒𝑒𝑒𝑒
= 𝜂𝜂𝑡𝑡

𝐽𝐽′
𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑙𝑙

+ 1−𝜂𝜂𝑡𝑡
𝐽𝐽′

𝑝𝑝𝑙𝑙𝑖𝑖𝑒𝑒𝑝𝑝
,  (27) 
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𝐽𝐽′
𝑒𝑒𝑒𝑒𝑒𝑒 = 1

� 𝜂𝜂𝑡𝑡
𝐽𝐽′𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑙𝑙

+ 1−𝜂𝜂𝑡𝑡
𝐽𝐽′𝑝𝑝𝑙𝑙𝑖𝑖𝑒𝑒𝑝𝑝

�
 (28) 

where J’total is the Saint Venant (uniform) torsional stiffness per unit width at the monolithic limit 
(defined by eq. (25); and where J’plies is the Saint Venant (uniform) torsional stiffness per unit width for 
the glass plies (defined by eq. (24)). The torsional stiffness of the beam is 

Jeff = J’eff * B (29) 

where B is the breadth. 

This provides the effective section properties to calculate the critical elastic buckling moment for 
laminated fins. Notice that the EET method for torsion presented by Galuppi et al. (2020) is based on 

the thin-walled approximation of  𝐽𝐽𝑝𝑝𝑙𝑙𝑦𝑦 =  𝐵𝐵ℎ𝑖𝑖
3

3
.. However, AS1288 presents a more conservative and 

accurate version of the formula, that is: 

𝐽𝐽𝑝𝑝𝑙𝑙𝑦𝑦 =  𝐵𝐵ℎ𝑖𝑖
3

3
�1 − 0.63 𝐵𝐵

ℎ𝑖𝑖
� (30) 

Thus, the equivalent term that could be substituted in equation (25) is: 

𝐽𝐽′
𝑝𝑝𝑙𝑙𝑖𝑖𝑒𝑒𝑝𝑝 = 1

3
� ℎ𝑖𝑖

3𝑁𝑁
𝑖𝑖=1 �1 − 0.63 𝐵𝐵

ℎ𝑖𝑖
� (31) 

If this format is used, it should also be used consistently when back-solving the effective thickness for 
torsion (35), but that is not presented here because only the torsional stiffness Jef is used in subsequent 
equations. 

The shear coupling function previously presented by Galuppi et al. (2020) can be rewritten as 

𝜂𝜂𝑡𝑡 = 1

1+
𝐸𝐸𝑔𝑔

�1−𝜈𝜈2�𝐺𝐺𝑖𝑖𝑖𝑖𝑡𝑡
 
𝐽𝐽′𝑝𝑝𝑙𝑙𝑖𝑖𝑒𝑒𝑝𝑝 . 𝐼𝐼′𝑐𝑐𝑡𝑡𝑐𝑐𝑝𝑝 

  𝐽𝐽′𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑙𝑙.Κ𝑡𝑡
 𝛹𝛹𝑡𝑡

      (32) 

where: 

𝛫𝛫𝑡𝑡 = 𝛫𝛫𝑏𝑏 = � 𝐻𝐻𝑖𝑖
2/ℎ𝑖𝑖𝑛𝑛𝑡𝑡,𝑖𝑖  𝑁𝑁−1

𝑖𝑖=1  (33) 

and 

𝛹𝛹𝑡𝑡 = 6(1 − 𝜈𝜈) 𝑘𝑘2+𝐵𝐵2

𝑘𝑘2𝐵𝐵2  (34) 

where B is the width; N is the number of glass plies, and N-1 is the number of interlayers. 

Notice that the expression (33) for the parameter Kt coincides with that obtained for the bending 
problem (eq. 21). This allows for a comprehensive formulation of the EET model, for both bending and 
torsion, that is proposed here for the first time. 

NOTE: This section for effective torsional stiffness is included for stability calculations. For applied torsional 
loads, the use of layered finite element methods or similar is recommended to capture longitudinal stresses 
due to warping of each ply, which are not calculated in this method. 
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5.2.2. Effective Thickness for Torsion Deflection 

The torsional EET ℎ�𝑤𝑤;𝜏𝜏  defined as the thickness of a monolithic glass prism of width B and length L, 
having the same geometric torsional constant of the laminated glass element, is given by formula: 

ℎ�𝑤𝑤;𝜏𝜏 =  �3  𝐽𝐽′
𝑒𝑒𝑒𝑒

3  (35) 

If the thick-ply formula from AS1288 presented at equation (31) is substituted at equation (25), then 
the same equation should be used to iteratively back-calculate the effective thickness for torsion 
deflection. 

5.2.3. Effective Thickness for Torsional Stress 

The thickness of a monolith for which the maximum shear stress in the i-th glass ply equals the 
maximum shear stress in glass for the laminated package is:   

ℎ�𝑖𝑖;𝜏𝜏 = � ℎ�𝑤𝑤
3

ℎ𝑖𝑖+α|𝑑𝑑𝑖𝑖| (36) 

α = 2

1+ 𝐸𝐸
�1−𝜈𝜈2�𝐺𝐺𝑖𝑖𝑖𝑖𝑡𝑡

 
� ℎ𝑖𝑖𝑑𝑑𝑖𝑖

2𝑁𝑁

𝑖𝑖=1

 � 𝐻𝐻𝑖𝑖
2/ℎ𝑖𝑖𝑖𝑖𝑡𝑡,𝑖𝑖 

𝑁𝑁−1

𝑖𝑖=1

 𝛹𝛹𝑡𝑡

    = 2

1+ 𝐸𝐸
�1−𝜈𝜈2�𝐺𝐺𝑖𝑖𝑖𝑖𝑡𝑡

 
𝐼𝐼𝑐𝑐𝑡𝑡𝑐𝑐𝑝𝑝

𝛫𝛫𝑡𝑡
 𝛹𝛹𝑡𝑡

 (37) 

 Continuously Elastically Restrained Fins 

Bedon et al. (2015) proposes the equations for fins with continuous elastic lateral restraint under 
uniform moment in the following form: (notation altered for US customary axis system, where “z” is 
the longitudinal axis - see Glossary.) 

5.3.1. Compression Flange Continuously Restrained by a Spring 

For fins continuously restrained on the compression flange by a (distributed) spring (Bedon et al., 2015), 
as shown in Figure 3, the critical buckling moment can be evaluated as: 

𝑀𝑀𝑐𝑐𝑐𝑐,𝐶𝐶 = 𝑦𝑦𝑐𝑐𝑘𝑘𝑥𝑥 � 𝑘𝑘
𝑛𝑛𝑅𝑅𝜋𝜋

�
2

+ ��𝐸𝐸𝑔𝑔𝐼𝐼𝑦𝑦 �𝑛𝑛𝑅𝑅𝜋𝜋
𝑘𝑘

�
2

+  𝑘𝑘𝑥𝑥 � 𝑘𝑘
𝑛𝑛𝑅𝑅𝜋𝜋

�
2

� �𝐺𝐺𝑔𝑔𝐽𝐽 + 𝑦𝑦𝑐𝑐
2 𝑘𝑘𝑥𝑥 � 𝑘𝑘

𝑛𝑛𝑅𝑅𝜋𝜋
�

2
� (38) 

where 

• ym is the height of the spring above the shear center (positive on the compression flange 
side); 

• kx is the stiffness of the spring per unit length; 
• nR is the number of half wavelengths of the buckled mode; nR  is an integer, try different 

values for nR and use the minimum value for Mcr,R; 
• when calculating the effective properties for laminated glass, the composite action 

development length shall not exceed the half wave-length ‘a’ = L/nR. 
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Fig. 7: Typical façade glass to beam connection by means of continuous silicone joints. (a) Overview and (b) analytical model 
(cross-section). Figure adapted from Bedon et al. (2015) and revised for US sign conventions. 

Notice that only the lateral stiffness of the silicone between the beam and façade glass is included in 
the derivation, the torsional resistance is not included, and the weather seal between the façade glass 
is not assumed to participate.  If there is more than one piece of façade glass along the length of the 
beam, the stiffness of the façade glass to restrain the beam should be assessed separately, similar to 
springs in series. 

Notice that the C2 terms, appearing in eq.s (1) and (2) for the case of unrestrained beam, related to 
load position, does not appear in this formulation. This is because the load is restrained from moving 
laterally. 

5.3.2. Tension Flange Continuously Restrained by a Spring 

Bedon et al. (2015) also develops a form for “reverse moment” with continuous elastic restraint of the 
tension flange: 

𝑀𝑀𝑐𝑐𝑐𝑐,𝐶𝐶 = 𝑦𝑦𝑐𝑐𝑘𝑘𝑥𝑥 � 𝑘𝑘
𝑛𝑛𝑅𝑅𝜋𝜋

�
2

− ��𝐸𝐸𝑔𝑔𝐼𝐼𝑦𝑦 �𝑛𝑛𝑅𝑅𝜋𝜋
𝑘𝑘

�
2

+  𝑘𝑘𝑥𝑥 � 𝑘𝑘
𝑛𝑛𝑅𝑅𝜋𝜋

�
2

� �𝐺𝐺𝑔𝑔𝐽𝐽 + 𝑦𝑦𝑐𝑐
2 𝑘𝑘𝑥𝑥 � 𝑘𝑘

𝑛𝑛𝑅𝑅𝜋𝜋
�

2
� (39) 

where the input terms are as defined above. 
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5.3.3. Combined Equation 

The above equations (27) and (28) can be efficiently consolidated into a single equation: 

𝑀𝑀𝑐𝑐𝑐𝑐,𝐶𝐶 = ��𝐸𝐸𝑔𝑔𝐼𝐼𝑦𝑦 �𝑛𝑛𝑅𝑅𝜋𝜋
𝑘𝑘

�
2

+  𝑘𝑘𝑥𝑥 � 𝑘𝑘
𝑛𝑛𝑅𝑅𝜋𝜋

�
2

� �𝐺𝐺𝑔𝑔𝐽𝐽 + 𝑦𝑦𝑐𝑐
2 𝑘𝑘𝑥𝑥 � 𝑘𝑘

𝑛𝑛𝑅𝑅𝜋𝜋
�

2
� + 𝑦𝑦𝑐𝑐𝑘𝑘𝑥𝑥 � 𝑘𝑘

𝑛𝑛𝑅𝑅𝜋𝜋
�

2
 (40) 

where the term ym is positive for restraint on the compression side of the beam and ym is negative for 
the reverse moment case or where the restraint is on the tensile side of the beam. 

Note that substituting in nR = 1 and ym = 0, Eq. (40) reduces to the same classical equation of critical 
buckling moment of an unrestrained beam (1 half wavelength) under uniform moment. When 
substituting a large value for kx, Eq. (40) also approaches the results for continuously restrained fins in 
AS1288, which is believed to have originated with timber beams nailed to sheathing, i.e. it ignores the 
flexibility of the silicone.  

In Bedon’s paper, it is suggested that capacity modification factor factors can be applied for non-uniform moment profiles 
in the same manner as an unrestrained beam, however in benchmarking it is the moment profile over the critical half-
wavelength (similar to local buckling) that is relevant for accurate prediction of the elastic buckling moment. For simply 
supported beams under uniform load, for nR ≥3 the moment over the critical segment is sufficiently uniform for it to be of 
limited benefit.  Using the formula for Cb in AISC 360 and parabolic moment profile yields the correction factors in Table 7, 
which can be used in place of C1 in equations (41) and (42).  

Table 7: Capacity modification factor, Cb, as a function of number of half-wave lengths 
 for a simply supported beam with uniformly distributed load. 

nR  1 2 3 4 5 6 

Cb  1.136 1.299 1.014 1.061 1.005 1.026 

 Laminated Beams Continuously Restrained by a Spring 

For laminated beams with non-uniform moment this becomes: 

𝑀𝑀𝑐𝑐𝑐𝑐𝑅𝑅,𝑙𝑙𝑎𝑎𝑐𝑐 = 𝐶𝐶1��𝐸𝐸𝑔𝑔𝐼𝐼𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒 �𝑛𝑛𝑅𝑅𝜋𝜋
𝑘𝑘

�
2

+  𝑘𝑘𝑥𝑥 � 𝑘𝑘
𝑛𝑛𝑅𝑅𝜋𝜋

�
2

� �𝐺𝐺𝑔𝑔𝐽𝐽𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑦𝑦𝑐𝑐
2 𝑘𝑘𝑥𝑥 � 𝑘𝑘

𝑛𝑛𝑅𝑅𝜋𝜋
�

2
� + 𝑦𝑦𝑐𝑐𝑘𝑘𝑥𝑥 � 𝑘𝑘

𝑛𝑛𝑅𝑅𝜋𝜋
�

2
 (41) 

Where, again, ym >0 for restraint on the compression side, and ym <0 for the “reverse moment” case 
or where the restraint is on the tensile side of the beam and C1 is a function of the moment profile in 
the critical half-wave. (See also table 7) 

Because the differential shear between the plies that mobilizes the interlayer under curvature reverses 
direction at the point of contra-flexure of the beam, the length parameter must be taken as the half-
wavelength, not the full length of the beam when calculating the enhanced effective thickness 
properties. This means that 𝐼𝐼𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒 is evaluated, by means of the EET method, by using coefficient 𝜓𝜓 =
𝜋𝜋2

𝑎𝑎2� , where 𝑎𝑎 is the half wave-length, as per Table 2, and 𝑎𝑎 = 𝐿𝐿 𝑛𝑛𝐶𝐶� . 

Using the same spreadsheet for both the effective section properties and the critical moment allows 
rapid testing of different nR values in order to find the respective effective section properties and the 
critical elastic buckling moment. 
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For systems which have a relatively short half-wave length and high nR, the effective St Venant 
torsional stiffness can become small and the warping stiffness can become appreciable. In this case, 
an expanded form of the equation including the warping constant is proposed: 

𝑀𝑀𝑐𝑐𝑐𝑐𝑅𝑅,𝑙𝑙𝑎𝑎𝑐𝑐,𝐼𝐼𝑤𝑤 = 𝐶𝐶1��𝐸𝐸𝑔𝑔𝐼𝐼𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒 �𝑛𝑛𝑅𝑅𝜋𝜋
𝑘𝑘

�
2

+  𝑘𝑘𝑥𝑥 � 𝑘𝑘
𝑛𝑛𝑅𝑅𝜋𝜋

�
2

� �𝐸𝐸𝑔𝑔𝐼𝐼𝑤𝑤 � 𝑘𝑘
𝑛𝑛𝑅𝑅𝜋𝜋

�
2

+ 𝐺𝐺𝑔𝑔𝐽𝐽𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑦𝑦𝑐𝑐
2 𝑘𝑘𝑥𝑥 � 𝑘𝑘

𝑛𝑛𝑅𝑅𝜋𝜋
�

2
� +

𝑦𝑦𝑐𝑐𝑘𝑘𝑥𝑥 � 𝑘𝑘
𝑛𝑛𝑅𝑅𝜋𝜋

�
2

    (42) 

This case then raises the question of how to calculate the warping constant Iw for a laminated fin. While 
solid rectangles have a non-zero warping constant, the authors are not aware of a formula for their 
calculations for laminated elements. For the fully composite state, finite element solutions, such as the 
beam section generator in Strand7 (Strauss7 in Europe) may be used. 

The warping constant for the layered state is well approximated by the warping function of the 
centerlines of the plies. Similar to the warping constant of an I-beam, the warping constant of 
symmetric layered fins is: 

𝐼𝐼𝑤𝑤;𝑝𝑝𝑙𝑙𝑖𝑖𝑒𝑒𝑝𝑝 ≅ ∑ 𝑑𝑑𝑖𝑖
2 ℎ𝑖𝑖𝐵𝐵3

12
𝑛𝑛
𝑖𝑖=1  (43) 

For non-symmetric laminates it is required to solve the fundamental equations with the net axial thrust 
of each ply being zero, to give the additional equations to be able to solve the matrix for the shear 
center.  That is not covered in this paper and evaluation by numerical methods is a more accurate 
alternative. 

For the cases tested at the time of writing, the interpolation function has not been fully developed, 
however noting that: 

• both the layered and the solid have warping constants of similar magnitude;  
• both Saint-Venant torsion and warping constants are dominated by shear across the width of the 

section; 
• the effect of the warping constant is relatively small, so some inaccuracy will have a small influence 

in the overall result; 
• it is suggested that using the interpolation function for Saint Venant torsion may be sufficiently 

accurate until a better option is developed. (Note for very critical cases, confirmation by testing and 
layered finite element models is recommended.) 

𝐼𝐼𝑤𝑤𝑒𝑒𝑒𝑒 ≅ 1

� 𝜂𝜂𝑡𝑡
𝐼𝐼𝑤𝑤;𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑙𝑙

+ 1−𝜂𝜂𝑡𝑡
𝐼𝐼𝑤𝑤;𝑝𝑝𝑙𝑙𝑖𝑖𝑒𝑒𝑝𝑝

�
 (44) 
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 Spring Stiffness 

Typically, the spring is structural silicone to the façade glass.  Where the façade glass is a single piece 
of glass that is fixed laterally, the spring is well approximated by the stiffness of the silicone. For shear 
stiffness, the constitutive response is approximately linear.  

The local spring stiffness per unit length can be calculated as: 

𝑘𝑘𝑥𝑥 =  𝐺𝐺𝑝𝑝𝑝𝑝 . ∑ 𝑤𝑤𝑝𝑝𝑖𝑖𝑙𝑙
ℎ𝑝𝑝𝑖𝑖𝑙𝑙

�  (45) 

where:    

Gss is the shear stiffness of the structural silicone; 

∑ 𝑤𝑤𝑝𝑝𝑖𝑖𝑙𝑙  is the total bite of the silicone; 

hsil is the glue-line thickness of the silicone (See also Figure 7). 

5.5.1. Multiple Facade Glass Panels 

The above formula is for the spring stiffness between the fin and facade glass that braces it.  Where 
there are multiple pieces of façade glass along the length, the flexibility of the support from the façade 
glass needs to be considered in the spring constant.  (Similar to springs in series reducing the apparent 
stiffness.) 

5.5.2. Spring Stiffness of a Silicone Bite in Tension/Compression  

In this configuration, the stiffness is non-linear. It is suggested to consult with the manufacturer for 
suitable values.  However, it is conservative to use a lower bound approximation of the stiffness. 

6. Imperfect Beams 

With the effective section properties and critical elastic buckling moment, the capacity can be 
calculated by considering the initial imperfections.  As the critical buckling moment is approached, the 
second-order effects become significant in calculating the total tensile stress that limits the capacity 
of the beam. 

The Kala equation for imperfect beams (Kala, 2013) provides a method for including the second order 
effects as a function of target stress level, the level of imperfection, section properties, and the elastic 
critical buckling moment. 

𝑀𝑀𝑛𝑛 = −
�4𝐷𝐷1

2+(𝐷𝐷4+𝐷𝐷5)2+4𝐷𝐷1(𝐷𝐷4−2𝑀𝑀𝑐𝑐𝑐𝑐
∗ 𝐷𝐷3)

4𝑀𝑀𝑐𝑐𝑐𝑐
∗ 𝑆𝑆𝑦𝑦

+ 2𝐷𝐷1+𝐷𝐷4+𝐷𝐷5
4𝑀𝑀𝑐𝑐𝑐𝑐

∗ 𝑆𝑆𝑦𝑦
 (46) 

with: 

𝐷𝐷1 = 𝑓𝑓′
𝑔𝑔𝑀𝑀𝑐𝑐𝑐𝑐

∗ 𝑆𝑆𝑥𝑥 𝑆𝑆𝑦𝑦 

𝐷𝐷2 = 𝑀𝑀𝑐𝑐𝑐𝑐
∗ 𝑆𝑆𝑦𝑦 + 𝑁𝑁𝑐𝑐𝑐𝑐𝑦𝑦|𝑎𝑎𝑢𝑢0|𝑆𝑆𝑥𝑥 

𝐷𝐷3 = 𝑀𝑀𝑐𝑐𝑐𝑐
∗ 𝑆𝑆𝑦𝑦 − 𝑁𝑁𝑐𝑐𝑐𝑐𝑦𝑦|𝑎𝑎𝑢𝑢0|𝑆𝑆𝑥𝑥 

𝐷𝐷4 = 2𝑁𝑁𝑐𝑐𝑐𝑐𝑦𝑦
2 𝐼𝐼𝑥𝑥|𝑎𝑎𝑢𝑢0| 
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𝐷𝐷5 = 2𝑀𝑀𝑐𝑐𝑐𝑐
∗ 𝐷𝐷2 

𝑁𝑁𝑐𝑐𝑐𝑐𝑦𝑦 = 𝜋𝜋2 𝐸𝐸𝑔𝑔𝐼𝐼𝑦𝑦

𝐿𝐿2  

where:  

Ix  is the second moment of area about the X axis (strong axis); 

Iy  (𝐼𝐼𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒  for laminated sections)  is the (effective) second moment of area about the Y axis 

(weak axis); 

Sx is the elastic section modulus about the X axis (strong axis); 

Sy is the (effective) elastic section modulus about the Y axis (weak axis), for laminated glass 
use 

 𝑆𝑆𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒 = ℎ�𝑖𝑖;𝜎𝜎;𝑐𝑐𝑖𝑖𝑛𝑛
2

6
�  (47) 

 

 where: 

 ℎ�𝑖𝑖;𝜎𝜎;𝑐𝑐𝑖𝑖𝑛𝑛 is the minimum stress-effective thickness, evaluated according to eq. (23). 

𝐹𝐹′
𝑔𝑔 is the glass design tensile strength (i.e. the target stress for a given level of reliability); 

For the purpose of 𝑁𝑁𝑐𝑐𝑐𝑐𝑦𝑦(appearing in the definition of D2, D3 and D4), L is the overall length of the 
beam, not the half-wave length, because the unrestrained flange will buckle in a single half-wave (L) 
in the critical case (assuming no torsional restraint from the silicone). For laminated glass beams, Ncry 

may be evaluated by adopting the EET approach (see Sect. 2.2), with 𝜓𝜓 = 𝜋𝜋2

𝑘𝑘2 , or by adopting other 

models proposed by the literature [15]. Note that 𝜓𝜓 for weak axis beam bending stiffness is 168
17𝑘𝑘2 =

9.882
𝑘𝑘2  , is only a 1.3% difference to 𝜓𝜓 = 𝜋𝜋2

𝑘𝑘2 =  9.870
𝑘𝑘2  for axial buckling.  The difference in effective stiffness 

is even smaller and, for simplicity and allowing for the non-uniform compression along the beam, the 
more conservative beam value was used in the numerical comparison in section 4 below. 

As the imperfection parameter auo needs to capture the maximum of the torsional imperfection, lateral 
imperfection or combination thereof, the following definitions are proposed to capture the worst case. 
The maximum assumed design imperfection, auo, is measured perpendicular to the Y axis as defined 
below in figure 3: 
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Fig. 8: Imperfect Beams’ Characteristic Dimension, auo. 

NOTE: At the time of writing it has been noted that due to the high slenderness of glass fins, with large 
differences between Ix and Iy, that for unrestrained beams it is important to consider application of 
loads to the principal axies with the associated minor axis bending stress. However in the context of a 
continuously restrained beam, the formulation previously stated by Kala is acceptable with suitable 
reductions as suggested below.  

 Parametric Analysis 

For this case of a theoretical 6 m beam with breadth of 450 mm, and a construction of 9.02 mm+1.52 
mm+9.02 mm laminated glass (ASTM minimum thickness for 3/8” (10mm) glass), the interlayer having 
a stiffness of 3 MPa, with 2 structural silicone bites of 6 mm and an 8 mm glue-line which have a shear 
modulus of 0.3 MPa, and an initial imperfection of 12 mm (L/500), figure 4 shows the nominal moment 
design capacity, for both tension and compression edges, as a function of the glass design stress.   

 

Fig. 9: Nominal Moment Capacity vs Glass Design Capacity (F'g) for beams with continuous elastic restraint to compression 
edge (Mn.comp) and tension edge (Mn.tens). 
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Figures 10a-f are for the same scenario described above for figure 9 with nominated input parameters 
varied. 

 

Fig. 10a. Nominal Moment Capacity (Nmm) with compression edge restrained vs Glass Design Capacity (F'g) (MPa),  
for different values of the initial imperfection. 

 

 

Fig. 10b: Nominal Moment Capacity (Nmm) with tension edge restrained vs Glass Design Capacity (F'g) (MPa),  
for different values of the initial imperfection. 
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Fig. 10c: Nominal Moment Capacity (Nmm) with compression edge restrained vs Glass Design Capacity (F'g) (MPa),  
for different thickness of the silicone bite (mm). 

 

Fig. 10d: Nominal Moment Capacity (Nmm) with tension edge restrained vs Glass Design Capacity (F'g) (MPa),  
for different thickness of the silicone bite (mm). 
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Fig. 10e: Nominal Moment Capacity (Nmm)with compression edge restrained vs Glass Design Capacity (F'g) (MPa),  
for different shear moduli of the interlayer (MPa). 

 

Fig. 10f: Nominal Moment Capacity (Nmm) with tension edge restrained vs Glass Design Capacity (F’g) (MPa),  
for different shear moduli of the interlayer (MPa). 

From Figures 10a and 10b, it can be observed that imperfections can significantly increase the stress 
for a given moment capacity approaching the buckling load, a phenomenon not captured in the AS1288 
method. 

From Figures 10c and 10d it can be observed that the introduction of any silicone bite has a significant 
effect and then added stiffness a lessor effect.  

From Figures 10e and 10f, it can be observed that the shear stiffness of the interlayer has a significant 
impact on the moment capacity of the beam. 
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It should be noted that in Kala’s derivation (Kala, 2013), initially both the lateral imperfection and the 
torsional imperfection are defined separately. In the final version of the formula, the torsional 
imperfection is assumed to be a function of the lateral imperfection.  In benchmarking, the 
approximation works well for imperfections that resemble the primary buckling mode, including the 
number of wavelengths where appropriate, but can be somewhat conservative or non-conservative 
for other imperfections. To compensate, it is suggested to use a reduced Mcr to account for potential 
variations in the actual imperfection shape. A 15% reduction is proposed and has been found to be 
adequate for a limited number of checks for imperfections of practical magnitude but has not been 
tested exhaustively. Below, in figures 11b, 11c and 11d are examples of the comparison of the analytic 
method proposed here with finite element using layered brick models of the laminated glass fin, 
prepared using Strand7/Strauss7.  

 

Fig. 11a: The seed imperfection was the primary buckling mode of the unbraced beam under negative load scaled to 12mm 
for all cases. 

 

Fig. 11b: Comparison of finite element methods (FEM) and proposed methods for Nominal Moment Capacity vs Glass 

Design Capacity (F'g), for elastic restraint to compression edge, Gint = 0.97 MPa; kx = 0.45 N/mm/mm. 
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Fig. 11c: Comparison of finite element methods (FEM) and proposed methods for Nominal Moment Capacity vs Glass 

Design Capacity (F'g), for elastic restraint to tension edge, Gint = 0.97 MPa; kx = 0.45 N/mm/mm. 

 

Fig. 11d: Comparison of finite element methods (FEM) and proposed methods for Nominal Moment Capacity vs Glass 

Design Capacity (F'g), for elastic restraint to compression edge, Gint = 140 MPa; kx = 0.45 N/mm/mm. 

In figure 6b we see that because the seed imperfection poor, with widest imperfection at the tension 
edge and has a single half wave (nR = 1) whereas the critical elastic restrained mode has five half waves 
(nR = 5), there is a ‘snap’ from amplification of the initial imperfection to critical mode. Discrepancies 
between the theory and modelling in figures 6c and 6d also reflect the limitations of simple seed 
imperfections with lack of agreement to the critical case. See also section 6. 

It is suggested for design to use a reduced elastic critical buckling moment in the Kala equation, M*cr, 

where M*cr = 0.85 Mcr. 

Using M*cr with a 15% reduction also means that the Kala equation asymptotes to a capacity 15% below 
the elastic critical moment, hence no further reduction is required when design is performed to an 
LRFD (Load and Resistance Factor Design, i.e. limit state) level of load and stress capacity.   

For LRFD strength capacity consider referencing EN 16612 or CEN/TS-19100. Note that the stress 
values in the appendix of ASTM E1300 are for statistically acceptable use in windows with limited 
consequence in the event of failure and are not indexed to an appropriate level of reliability for 
structural applications. Design to ASD (Allowable Stress Design) would require additional checks for 
buckling limits and design factor relative to wind load variation; alternatively the formula above can 
be used with Mallow,ASD = Mn / 1.6.  (or appropriate weighted load factor).  
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7. Numerical Validation 

In the comparisons below, it can be seen that the Kala equation (46) follows benchmark finite element 
models well for practical ranges of imperfections and moments less than 0.85 Mcr..  Above 0.85 Mcr 
the finite element models will capture post-buckling behavior, whereas the Kala equation will 
asymptote to Mcr. Thus, the Kala equation has good accuracy at typical design levels of moment and is 
typically conservative where it deviates from actual. 

To verify the accuracy of the analytical approach, a set of numerical simulations was carried out in 
ABAQUS software, by taking into account various geometrical and mechanical configurations of 
technical interest. The reference finite element (FE) model was described in ABAQUS according to 
Bedon et al. (2015) that is in the form of multilayer composite shell elements for the laminated glass 
section, with a set of springs to reproduce the adhesive joint. For the purpose of present comparison, 
both glass and interlayer materials were mechanically modelled as linear elastic. For a given 
geometrical and mechanical configuration, the typical analysis consisted in a nonlinear simulation with 
imposed initial imperfection and monotonically increasing bending moment for each beam. To account 
for the initial imperfection, the corresponding shape was Imported from a preliminary buckling analysis 
(Bedon et al., 2015). The subsequent nonlinear incremental analysis was thus carried out by monitoring 
the evolution of tensile stress peaks in glass, in order to capture the expected failure bending moment. 
Note that the initial imperfection shape was selected based on the critical buckling moment and on 
the corresponding number of half sine waves for each examined configuration. 

Typical comparisons were carried out by monitoring the load-stress trend for selected configurations, 
as well as the failure bending moment for a given tensile strength. An example can be seen in Figure 
7, where failure bending moments are compared for a multitude of input configurations in terms of 
analytical of FE numerical estimates for the selected laminated glass section (with 8 mm the thickness 
of three glass layers, 1.52 mm the thickness of interposed bonding films, with 0.3 m the height and 
1/300 the initial imperfection). Different colors denote a variation in the stiffness of interlayers (Gint= 
3 MPa or 7 MPa respectively). 

In general, as in Figure 7, the percentage scatter of analytical and numerical predictions was measured 
in an average of less than 5%, and up to 8-9% for some cases. The comparative analysis showed that 
the softer is the interlayer and the higher is the calculated percentage scatter. In any case, the accuracy 
and robustness of the proposed analytical approach was emphasized by the measured limited scatter. 

 

Fig. 12: Comparison of analytical and numerical failure bending moments for a selection of geometrical and mechanical 
configurations. In evidence, the effect of interlayer stiffness (with 1/300 the amplitude of initial imperfection). 
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The effect of initial imperfection, as previously discussed, has a critical role in load-bearing 
performance and bending capacity assessment. In this regard, Figure 8 shows that the selected 
numerical configurations – when affected by critical imperfection shape with a variable initial 
amplitude – are generally in good agreement with the corresponding analytical estimates. Especially 
for small initial imperfections (e.g., less than 1/300), the comparative results in Figure 8 have an 
associated scatter of less than 1%. 

 

Fig. 13: Comparison of analytical and numerical failure bending moments for a selection of geometrical and mechanical 
configurations. In evidence, the effect of maximum amplitude for the initial imperfection (with G= 7 MPa for the interlayer). 

Finally, in accordance with Bedon et al., 2015, the shape of initial imperfection should be always 
associated to the critical number of sine waves to calculate conservatively the bending capacity of a 
given laminated glass beam. The use of first deformed shape (nR=1) for all configurations, would result 
in minimum 10% of overestimation of bending capacity relative to a matching seed imperfection or 
analytical approach (see for example Figures 6b, 6c, 6d and 9). 

 

Fig. 14: Comparison of analytical and numerical failure bending moments for a selection of geometrical and mechanical 

configurations. In evidence, the effect of initial imperfection shape and sine waves nR (with G= 7 MPa for the interlayer and 
1/300 the amplitude of initial imperfection). 
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8. Summary 

The stability equations in AS1288 for continuous restraint have been found to be non-conservative for 
some circumstances such as continuous elastic restraint by structural silicone. Glass is brittle and 
laminated glass is a popular method to add robustness and control the behaviour of glass beams if 
they are damaged by non-design loads. The Wolfel-Bennison effective thickness model in ASTM E-1300 
is non-conservative for torsional stiffness (if the beam length is used for ‘a’) and hence is non-
conservative for stability calculations of laminated glass fins. As imperfect beams approach the critical 
elastic buckling moment, secondary stresses may develop that are significant relative to the tensile 
capacity assumed for the glass. AS1288 has been used successfully for monolithic fins because the 
strength model for structural fins in that standard is more conservative than others; the conservative 
strength model makes allowances for the other inaccuracies.  

The method presented includes treatment of glass fins that are monolithic or laminated, unrestrained 
or with continuous elastic lateral restraint, taking into account the effect of imperfections in a system 
and the increase in stress they cause as loads approach the elastic critical buckling moment. 

The Enhanced Effective Thickness method by Galuppi et al. has been presented with an alternate 
formulation that unifies the form of the equation for each of the target stiffnesses being considered, 
introducing a new term, and allowing the rest of the equation to be standardized.  This also allows 
unification of the 2-ply, 3-ply and N-ply formulations previously presented by Galuppi into a single 
equation. 

The formulas for elastic critical buckling moment for beams with continuous elastic restraint on the 
compression and tension flange by Bedon et al. have been unified into a single equation. The critical 
load profile for beams with non-uniform moment has been identified as the moment on the half 
wavelength rather than the overall beam. 

When calculating the effective section stiffnesses for laminated beams, the characteristic length 
parameter for buckling is the distance between the points of contra-flexure, i.e. the half-wavelength, 
not the overall beam dimensions.  

The Kala formula for imperfect beams has been introduced as a tool for calculating the moment 
capacity of glass beams given a target stress, critical elastic buckling moment, and initial imperfection.  

The method of analysis has been found to be favourably accurate for the practical design ranges of 
moment, less than 0.85 Mcr. Above this moment the comparison with finite element analysis is highly 
subject to the shape of the initial imperfection modelled, which in reality will also be unknown; thus, 
a reduction factor on Mcr is proposed to allow for practical design. 

The method increases the accuracy of fin and beam moment capacity, taking into account lamination, 
continuous elastic lateral restraints, stress capacity, and initial imperfections.  
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