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Abstract 

The use of glass as structural material has highlighted the need for more reliable numerical approaches 
to analyze its mechanical behavior, especially in the accidental eventuality of fracture. Modelling the 
behavior of fractured laminated glass, in fact, is fundamental to assess the Post-Fracture load-bearing 
capacity. However, this is a highly challenging task because of the many interplaying factors, such as 
the viscoelastic and thermal-dependent behavior of the interlayer, the presence of a highly complex 
and variable crack pattern and the interaction among fragments. The objective of the present work is 
the development and testing of a robust numerical model that can naturally introduce the generated 
crack pattern into virtual specimens and manage the interaction among many fragments. The phase 
field fracture model is herein explored, by assigning the damage variable to fit the pre-existing crack 
pattern. Then, the specimen is loaded letting the phase field managing the fragments interaction. The 
dependence of the stress tensor with the damage variable is herein defined through the Cleavage-
Deviatoric model, since it prevents fully damaged regions from transmitting tensile and shear stresses 
yet keeping their ability to bear compressive forces. Indeed, this model can asymptotically reproduce 
unilateral and frictionless contact conditions between the existing crack lips. Preliminary case studies 
are discussed to check the potentiality of the proposed approach. 
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1. Introduction 

Differently from the most common construction materials, such as concrete and steel, the almost 
perfect elastic-brittle mechanical response and the sensitivity to cracking give glass elements a high 
risk of breakage, which can be critical if no further measures for the situation during the event of 
fracture or for the situation after the event of fracture are taken. Consequently, CEN/TS 19100-1 (2021) 
has introduced the concept that the design of glass structures shall always consider situations where 
parts of or the entire glass component fractures. Such a requirement is pursued by defining two 
additional limit states besides the well-known serviceability and ultimate limit states, namely the 
Fracture Limit State (FLS) during the event of fracture, and the Post Fracture Limit State (PFLS) where 
glass is fractured. In the PFLS sufficient safety after fracture for a limited period of time shall be verified, 
by guaranteeing a residual resistance of the glass component or an alternative load path. 

Laminated glass (LG) is the most suitable type of glass to meet the requirements of PFLS, since it has 
an intrinsic redundancy due to the presence of more than one ply, that can be exploited in case not all 
the plies fracture. With reference to LG, the PFLS is further split in two categories: PFLS I, when at least 
one ply remains intact and PFLS II, when all plies are fractured. While well-established models are now 
available for the analysis of intact LG panes at the Ultimate Limit State (Foraboschi, 2014; Belis et al., 
2013; Biolzi et al., 2017; Galuppi and Royer-Carfagni, 2016), their counterpart for assessing the post 
fracture behaviour is missing, although some attempts have been made (Biolzi et al., 2019; Biolzi et al., 
2020; Biolzi and Simoncelli, 2022; Bedon and Fasan, 2024). According to CEN/TS 19100, PFLS of glass 
components can be assessed by experimental testing or alternatively by a theoretical assessment. 
However, the only way admitted to theoretically assess the residual load bearing capacity in the PFLS 
is to consider that at least one ply of the LG component remains unfractured (PFLS I), neglecting 
favourable effects of the fractured glass plies. On the one hand, this assumption must be justified, 
whereas, on the other hand, it may result in being too conservative. Furthermore, the case where all 
the plies are fractured (PFLS II), which may still provide a residual load bearing capacity, cannot be 
analysed. Therefore, the verification requires research and experimental testing of the original glass 
member including its supports, approach that most of the practitioners cannot afford, except for very 
simple structures. In this context, a numerical approach for evaluating the residual load bearing 
capacity of fractured LG panes can be beneficial for the design process. 

The main challenge of quantitatively assessing the residual behaviour of shattered glass components 
lies in the complex interactions among fragments, which are often numerous and of contorted shapes. 
These characteristics necessarily call for the use of computational approaches to solve the continuum’s 
state throughout the fragmented domain, among which the Finite Element (FE) method stands out. 
However, the standard formulation of the FE method is unable to deal with the unilateral contact 
conditions occurring along the fragment interfaces, hence requiring its ad hoc enrichment. Given that, 
the conventional modelling pathway consists of the straightforward representation of the physical 
phenomenon, thus modelling each fragment as a separate continuum subjected to some contact 
pressure exerted by the neighbouring fragments to avoid penetration. Despite this procedure being 
well known and robust, it requires extensive and tedious pre-processing for the study of fragmented 
domains since the mesh must conform with each of the fragments’ geometry. Additionally, given that 
the interactions between fragments are determined via node tracking techniques, the resulting 
computational cost of the problem increases considerably with the number of fragments and contact 
surfaces. 
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In light of these difficulties, the present study explores the use of the well-established Phase Field 
fracture model (PFM) introduced by Bourdin et al. (2000) to represent the internal cracks that give rise 
to the different fragments, as well as to manage the interactions between them. Rooted in the 
variational revisitation of brittle fracture by Francfort and Marigo (1998), the PFM exploits the 
theoretically robust regularization conceptualized by Ambrosio and Tortorelli (1990) to approximate 
any discontinuity by localized transition bands. To that end, the PFM enriches the displacement 
problem with a nonlocally-driven continuous scalar field, also known as phase field or damage, that 
pointwise determines the state and stiffness of a material within the domain. Such a feature renders 
implicit the PFM representation of a crack, hence potentially allowing any crack pattern, regardless of 
its complexity, to be represented over a certain non-conforming mesh. Furthermore, the PFM has been 
reported by Vicentini et al. (2024) to be able to asymptotically reproduce unilateral contact conditions 
upon a proper choice of the function that modulates the stiffness based on the value of the phase field. 
Therefore, the PFM poses a powerful contender for assessing the residual behaviour of fractured glass 
components, in both PFLS I and PFLS II cases, especially when these are multiply fragmented. 

2. Particularization of the Phase Field fracture model for managing contact 
interaction between fragments 

Let us consider the generic continuum problem illustrated in Fig. 1a, in which a structural domain 
Ω ∈∼𝑁𝑁 |𝑁𝑁 = {2,3} with external boundary 𝜕𝜕Ω ∈∼𝑁𝑁−1 and outward normal 𝑛𝑛 is initially in absence of 
mechanical solicitations, yet it presents a set of internal cracks represented by Γ ∈∼𝑁𝑁−1. These cracks 
cause any subsequent structural behaviour to be piecewise continuous, with numerically inconvenient 
sharp discontinuities potentially taking place all along Γ . Given this scenario, let us establish the 
corresponding PFM by first introducing a scalar (phase) field 𝛼𝛼:Ω → [0,1], so that 𝛼𝛼 = 0 and 𝛼𝛼 = 1 
represent pristine and broken material states, respectively, and the transition from one another is 
continuous in space. In particular, considering the problem at hand and using the AT1-PFM (Pham et 
al., 2011), the strong form of the principle that governs the spatial distribution of 𝛼𝛼 reads as: 
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where ℓ stands for the PFM’s regularization length. As seen, Eq. (1) represents a Poisson-like problem 
defined in terms of Partial Differential Equations. Upon resolution, the resulting field for 𝛼𝛼 transitions 
continuously from 𝛼𝛼 = 1 at Γ to 𝛼𝛼 = 0 sufficiently far from it, as illustrated in Fig. 1b. Moreover, the 
size of the region surrounding Γ in which 𝛼𝛼 takes non-zero values is governed by ℓ, so that the original 
“sharp” problem in Fig. 1a is recovered as ℓ → 0. 
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(a) (b) 

Fig. 1: Schematic representation of: (a) a generic fractured domain, and (b) its PFM representation. 

Once the field 𝛼𝛼 is determined all along Ω by solving the problem in Eq. (1), the PFM can be further 
exploited to estimate the behaviour of the fractured domain in terms of the displacement field  
𝑢𝑢:Ω →∼𝑁𝑁 . To that end, let us assume that: (i) Ω  is filled with a linear elastic, homogeneous and 
isotropic material whose Lamé constants are 𝜆𝜆  and 𝜇𝜇 ; and (ii) Ω is subjected to some mechanical 
solicitations in the form of prescribed displacements 𝑈𝑈  along 𝜕𝜕𝑢𝑢Ω  and prescribed forces 𝑏𝑏  and 𝑓𝑓 

distributed along Ω  and 𝜕𝜕𝑓𝑓Ω = 𝜕𝜕Ω\𝜕𝜕𝑢𝑢Ω , respectively. Provided that, the strong form of the 
corresponding quasi-static elastic problem writes as: 
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where ( );σ ε α  represents the stress tensor associated to the infinitesimal strain tensor ε  and 

modulated by a given α . For the sake of clarity, the semicolon separates unknown variables to its left 

from fixed known fields to its right. Hence, it is through the proper definition of ( );σ ε α  that the PFM 

is able to approximate unilateral contact interactions while remaining in a continuum setup. In 
particular, these conditions consist in showcasing no stiffness upon both the normal separation and 
the tangential sliding of crack lips, whereas hard contact interactions take place to avoid the unphysical 
penetration of one fragment into another. To this end, it is a common practice to exploit the separation 

of variables to define ( );σ ε α , hence resulting the following expression for the AT1-PFM:  

𝜎𝜎 �𝜀𝜀 ;𝛼𝛼� = [(1 − 𝛼𝛼)2 + 𝑘𝑘] 𝜎𝜎𝐷𝐷 �𝜀𝜀� + 𝜎𝜎𝑅𝑅 �𝜀𝜀� (3) 

in which 𝑘𝑘 is a small parameter used for ensuring some residual stiffness as 𝛼𝛼 = 1, and both 𝜎𝜎𝐷𝐷  and 

R
σ represent the damageable and residual parts of the stress tensor. In particular, the so-called 

Cleavage-Deviatoric model proposed by Amor et al. (2009) was reported by Vicentini et al. (2024) to 
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be able to exactly reproduce the behavior above mentioned as ℓ → 0. In particular, this model defines 
the damageable and residual parts of the stress tensor as: 

( ) ( ) ( )D

1tr tr
2 3 3

I Iλ µσ ε ε µ ε ε+   = + + −   
   

 (4) 

and: 

( ) ( )R
tr

2 3
Iλ µσ ε ε− = + 

 
 (5) 

where I  represents the identity tensor and ( ) 2±• = • ± • . 

3. Implementation of the approach and case study on the effect of 𝓵𝓵  on the 
residual performance of simply fractured domains 

At this point, it is evident that the PFM-based approach for assessing the load-bearing capacity of 
fractured glass structures exploits the ability of the Cleavage-Deviatoric model to reproduce unilateral 
contact conditions between crack lips while remaining in a continuum context. Nonetheless, this 
formulation only performs exactly as desired in the limit ℓ → 0, so that the finite value of ℓ in actual 
implementations involves some degree of approximation to the actual behaviour. It is therefore 
paramount for the robustness of the approach to properly understand the potentially distorting effect 
that using finite values of ℓ has on the resultant behaviour, as well as to establish some practical 
guidelines for the model setup.  

In this sense, the present section reports the results of a simple case study that depicts the effect that 
varying the magnitude of ℓ  has on the resultant crack lip interaction. To that end, the scenario 
illustrated in Fig. 2a is considered, this consisting of a squared domain of dimensions 𝐿𝐿 𝑥𝑥 𝐿𝐿 in which: (i) 
plane strain conditions take place; (ii) the bottom edge is clamped so that 𝑢𝑢𝑥𝑥 = 𝑢𝑢𝑦𝑦 = 0 therein; (iii) 
the top edge has some prescribed displacements per 𝑢𝑢𝑥𝑥 = 𝑈𝑈𝑥𝑥 and 𝑢𝑢𝑦𝑦 = 𝑈𝑈𝑦𝑦; (iv) both the right and left 
edges are free; and (v) the domain presents an horizontal crack Γ along its midplane. Thereafter, the 
resultant crack lip interactions can be globally assessed by determining the resultant reaction forces 
per unit thickness 𝐹𝐹𝑥𝑥 and 𝐹𝐹𝑦𝑦 arising from the imposition of different combinations of 𝑈𝑈𝑥𝑥, 𝑈𝑈𝑦𝑦 and ℓ. In 
particular, two loading cases are to be considered hereafter, one of uniaxial compression (𝑈𝑈𝑥𝑥 = 0, 
𝑈𝑈𝑦𝑦 = −𝐿𝐿/100) and one of combined traction and shear (𝑈𝑈𝑥𝑥 = 𝑈𝑈𝑦𝑦 = 𝐿𝐿/100): the former allows for 
assessing the non-interpenetration across the crack, while the latter shows the absence of stiffness 
under such loading conditions. 

The implementation of this setup to a Finite Element (FE) context is conducted using the open source 
Python library FEniCSx (Alnæs et al., 2015). The discretization of the domain is undertaken by first order 
triangular elements whose characteristic size is 𝐿𝐿/100 everywhere but in the surroundings of the crack, 
whereof its size is refined down to min(ℓ/4, 𝐿𝐿/100 ). Per the characteristics of FE modelling, the 
successful implementation of the here described PFM-based approach requires addressing some of 
the theoretical aspects described in the previous section with flexibility, especially in what concerns 
the Dirichlet boundary conditions for 𝛼𝛼. Ideally, these are imposed over the (𝑁𝑁 − 1)-dimensional locus 
of points Γ, but this is not convenient in practice for it would require using meshes that are conforming 
with Γ. Now switching the attention to the mechanical problem, the localized stiffness reduction due 
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to 𝛼𝛼 is determined element-wise, so that in order to obtain the desired behaviour it is required that 
there exists fully damaged elements in the surroundings of Γ. These difficulties are adverted by setting 
the 𝛼𝛼 = 1 condition all throughout an 𝑁𝑁-dimensional locus of points ΩΓ, which consist in a stripe of 
thickness ℓ that surrounds Γ (see Fig. 2b), hence ensuring fully damaged elements therein. On the 
downside, this approximation can lead to some instabilities when ΩΓ  meets free edges due to the 
localized lack of stiffness. To avoid this, a buffer zone of width ℓ/2 in between ΩΓ and the free edges 
is introduced (see Fig. 1b), so that 𝛼𝛼 is not imposed to be equal to 1 therein but let to diffuse freely per 
Eq. (1), thereby retaining some localized stiffness. Overall, these deviations from the original problem 
are still coherent with the regularization nature of the PFM since the original sharp discontinuity 
problem is still recovered in the limit ℓ → 0. 

Provided this, the case study is the conducted by setting the Young’s modulus 𝐸𝐸 = 72 GPa and the 
Poisson’s ratio 𝜈𝜈 = 0.2.  For each of the two aforementioned loading conditions, ten different values 
of ℓ/𝐿𝐿  are considered within the range from (ℓ/𝐿𝐿)~10−3  to (ℓ/𝐿𝐿)~100 , and the corresponding 
reaction forces per unit thickness 𝐹𝐹𝑥𝑥 and 𝐹𝐹𝑦𝑦  along the upper edge are determined and reported in Fig. 
2c. It is to be noted that these results are normalized by the reaction forces 𝐹𝐹𝑥𝑥0 and 𝐹𝐹𝑦𝑦0 showcased by 
pristine domains subjected to the corresponding loading conditions. Particularly, for 𝑈𝑈𝑥𝑥 = 0 and 𝑈𝑈𝑦𝑦 =
−𝐿𝐿/100, 𝐹𝐹𝑥𝑥0 is null whereas 𝐹𝐹𝑦𝑦0 is: 

|𝐹𝐹𝑥𝑥0|
𝑈𝑈𝑦𝑦𝐸𝐸

≈ 1.0604 (6) 

which also coincides in absolute value with the 𝐹𝐹𝑦𝑦0 obtained when 𝑈𝑈𝑥𝑥 = 𝑈𝑈𝑦𝑦 = 𝐿𝐿/100. In this latter 
case, 𝐹𝐹𝑥𝑥0 turns out: 

|𝐹𝐹𝑥𝑥0|
𝑈𝑈𝑦𝑦𝐸𝐸

≈ 0.2706 (7) 

Therefore, it is clear after Fig. 2c that the PFM-based approach is indeed capable of accurately 
reproducing unilateral contact conditions once ℓ/𝐿𝐿 ≪ 1 since: the compressive stiffness across the 
crack is virtually identical as if no crack was present, i.e. 𝐹𝐹𝑦𝑦 ≈ 𝐹𝐹𝑦𝑦0 for 𝑈𝑈𝑦𝑦 < 0, whereas the shear and 
tensile stiffness across the crack are negligible in comparison with the pristine performance. 

4. Mechanical modelling of monolayer glass panes with real crack patterns 

Once it is proven that the above-described PFM-based approach is able to accurately reproduce the 
mechanical interaction between simply shaped fragments, it is now to be shown how it can be 
exploited to assess the residual mechanical performance of actual fractured glass components. For the 
sake of clarity, the logical workflow behind this approach is illustrated in Fig. 3. In this regard, the 
procedure begins with the image of an actual fragmented glass pane with arbitrarily complex cracks 
shapes, from which the region of interest of dimension 𝐿𝐿 x 𝐿𝐿 is isolated. Therein, the combination of a 
black background, indirect white lighting and the optical property of glass leads to the cracked and 
pristine regions being easily discernible for they appear as white and black in colour, respectively. 
However, and despite such an image is visually descriptive of the actual crack pattern, it still contains 
many superfluous and disruptive features that render it unsuitable for straightforward use towards 
the PFM definition, e.g. the apparent thickness of cracks caused by the camera misalignment. 

Therefore, some image pre-processing is required before it can be used for constructing the numerical 
model. Herein, the image of the region of interest is rendered useful by exploiting vector graphics 
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software to determine an approximate vectorized description of the complex cracks in terms of 
piecewise-defined Bezier curves. This technique therefore allows to obtain a “clean” approximation of 
the image in which the crack patterns are unequivocally defined by the mathematical description of 
its shape. Likewise, given that vector graphics software commonly allows to define the thickness of the 
Bezier curves at will, it becomes straightforward to use this vectorized representation of the cracks to 
define ΩΓ within the modelled domain Ω (see Section 3). Eventually, combining the outcome of this 
pre-processing procedure with the specific set of mechanical loadings results in the complete 
definition of the problem that is to be solved by the PFM-based approach. 

 
 

(a) (b) 

 

(c) 

Fig. 2: Illustration of (a) a mechanically solicited domain with a horizontal straight crack, (b) the PFM approximation with the 
Dirichlet boundary conditions for the phase field and mechanical problems, and (c) the corresponding reaction forces under 

either compression or traction plus shear loadings for various values of ℓ  . 

The information resulting from the input pre-processing is then used to define the Phase Field problem 
in the FE context. To that end, the vectorized definition of the cracks is first decoded into a binary 
distribution of α throughout the mesh, which only takes nodal values equal to either 0  or 1. Then, 
Boolean operations are used to determine the nodes in which α = 1, from which an implicit definition 
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of ΩΓ within the discretized domain is obtained. This information is then passed to the numerical FE 
solver associated to the problem defined per Eq. (1) so as to properly impose the Dirichlet boundary 
conditions on α. Upon resolution, the continuously defined field α is obtained, portraying a discretized 
and approximated PFM representation of the crack pattern. Once α is determined, all ingredients 
needed for solving the mechanical problem defined in Eq. (2) are available. In this regard, the 
corresponding mechanical solver is provided with the α field, the Dirichlet boundary conditions on 𝑢𝑢, 
and any distributed mechanical loading f   and 𝑏𝑏  that applies. Based on this, the obtention of the 
displacement field 𝑢𝑢 is straightforward, with different magnitudes of interest such as strains, stresses 
or reaction forces then being determined through postprocessing. 

 

Fig. 3: Flowchart of the PFM-based approach to assess the mechanical performance of real fractured glass components. 
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Looking at the particular analysis described in Fig. 3, it represents a confined compression test of the 
fractured domain. Assuming 𝐸𝐸 = 72  GPa, 𝜈𝜈 = 0.2, ℓ/𝐿𝐿 = 3.1667 ∙ 10−3  and 𝑓𝑓 = 𝑏𝑏 = 0, a pristine 

domain under the same loading conditions would reveal an overall stiffness of �𝐹𝐹𝑦𝑦0�/𝑈𝑈𝑦𝑦𝐸𝐸 ≈ 1.1111, 
as opposed to the value of �𝐹𝐹𝑦𝑦�/𝑈𝑈𝑦𝑦𝐸𝐸 ≈ 0.7778  showcased by the considered fractured domain. 
Likewise, provided a prescribed vertical displacement that is compressive and of magnitude 𝐿𝐿/100, 
the vertical stress in the pristine domain would be 𝜎𝜎𝑦𝑦𝑦𝑦,0 = −800 MPa, whereas in the broken domain 
one can find localized negative values for 𝜎𝜎𝑦𝑦𝑦𝑦 of magnitude as high as𝜎𝜎𝑦𝑦𝑦𝑦,0 = −2100 MPa. Overall, 
the PFM-based approach depicted in Fig. 3 shows promise for the assessment of the mechanical 
behaviour of real-world fractured glass components, although further quantitative validation of the 
results is required. 

5. Preliminary study on the post-fracture expansion in laminated tempered glass  

The herein introduced PFM-based approach can also be exploited to study the residual performance 
of laminated glass structures. In this regard, the present section will provide some insights into the 
preliminary modelling of the post-fracture in-plane expansion occuring in laminated tempered glass 
(Nielsen et al., 2022). For the sake of simplicity, the setup illustrated in Fig. 4a will be here considered. 
In particular, this consists in a fragmented glass pane of dimension 𝐿𝐿 𝑥𝑥 𝐿𝐿  and thickness ℎ1  that 
presents the same fragmentation pattern as the one studied in Section 4 and is assumed to present a 
constant deformation state through the thickness. Besides this, this layer is adhered on one side to a 
cohesive interlayer of thickness ℎ𝑖𝑖𝑖𝑖𝑖𝑖 which only presents shear stiffness of modulus 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖  and is in turn 
adhered to an infinitely rigid component on the opposite interface. Therefore, even in the absence of 
restricted displacements along the glass pane’s boundary, the domain does not deform freely.  

Given this setup, the post-fracture expansion is preliminarily modelled by assuming the glass pane to 
undergo a deformation per 

0
ε  in the absence of further mechanical solicitations. Therefore, the strong 

form of the glass pane’s elastic problem now writes as: 
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 (8) 

which represents the corresponding extension of the baseline elastic problem introduced in Eq. (2). 
Remarkably, the presence of a cohesive term in the problem above introduces a certain size effect in 
the problem in that, upon scaling the problem by 𝐿𝐿, the normalized solution remains constant only if 
the ratio 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖/𝐿𝐿 is maintained. 

At this point, let us resolve the problem defined in Eq. (8) by taking the solution for 𝛼𝛼 from the previous 
section and assuming that the domain boundary has no imposed displacements, i.e. 𝜕𝜕𝑢𝑢Ω = ∅, and that 
the relaxation straining 

0
ε  is homogeneous and equal to: 

2
0

1 0
10

0 1
ε −

 
= ⋅ 
  

 (9) 
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so that the material attempts to expand the same any in plane direction. Additionally, the different 
material properties and modelling parameters are here set as Assuming 𝐸𝐸 = 72 GPa, 𝜈𝜈 = 0.2, ℓ/𝐿𝐿 =
3.1667 ∙ 10−3 and ℎ1/𝐿𝐿 = 0.1, ℎ𝑖𝑖𝑖𝑖𝑖𝑖/𝐿𝐿 = 0.01, 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖/𝐿𝐿 = 50 MPa/mm, which for instance yields in the 
results for 𝑢𝑢𝑦𝑦/𝐿𝐿 and 𝜎𝜎𝑦𝑦𝑦𝑦  reported in Fig. 4b and 4c, respectively. Therein, it results clear how the 
central fragments are the ones that retain the most compressive stresses, this arising from the 
cumulative confinement effect caused by the cohesive layer opposing the displacement of the 
different. As for this, despite the outmost fragments showcasing the highest displacements in 
magnitude, they turn out to be mostly stress-free since they are subjected to such a confinement to a 
lesser extent.  

 

(a) 

  

(b) (c) 

Fig. 4: (a) Illustration of a laminate consisting in a fractured glass pane and an interlayer, and the corresponding contour 
plots of (b) y

u L  and (c) yyσ .  

6. Conclusions 

Overall, the PFM-based approach here introduced has proved suitable for modelling the behavior of 
fractured glass structures that interact with other conventional structural components, such as a 
cohesive interlayer. Nonetheless, these results are only preliminary and they require further validation 
and study. Likewise, despite its convenience and theoretical robustness, the herein proposed PFM-
based approach also showed some convergence-related difficulties while solving the problem in Eq. 
(8) upon certain combinations of 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖/𝐿𝐿. As such, further study in this regard is required to ascertain 
the robustness of the proposed approach for the preliminary study of partially fractured laminated 
structures. 
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