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Abstract 

Recently, increased efforts have been made to explore the possibility of using glass panes as structural 
components, such as shear stiffeners. However, there are obstacles to the widespread use of these 
panes, even though they have proven their load-bearing capacity in structural systems (Haese 2013). 
The sudden failure of individual glass panes is a major concern because it can affect the overall 
structural safety. To better understand the causes of this unpredictable behaviour of glass façades, a 
numerical and physical sensor concept in the form of a hybrid digital twin will be developed. This 
involves both measurements of real load-bearing systems and simulations using numerical sensors. 
The two concepts will initially be developed independently, whereby the virtual model is approximated 
in a continuous process using measurements of the real structure. For this idea of the hybrid digital 
twin, a numerical sensor model is first presented in this article, which is also used for the evaluation of 
real sensors and thus serves as a basis for further investigation. The research project on the safety of 
glass façades in load-bearing structures is an important step towards improving the reliability and 
durability of such structures. The introduction of a hybrid digital twin will contribute to the 
development of an improved safety concept and the further establishment of these applications. 
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1. Introduction 

The construction industry is facing challenges such as time constraints, cost pressures, and increasing 
technical requirements that lead to higher damage costs, which are often interpreted as indicators of 
loss of quality (Böhmer et al. 2022). However, it is a matter of definition whether this already 
constitutes increased building damage. Therefore, this study refers to the definition according to Farrar 
and Worden (2007), in which a construction defect is defined as any change to a system that affects 
its material or geometric properties so that its performance is impaired. A direct comparison with the 
pre-damage condition is required to determine the extent of impairment. 

Despite rising refurbishment costs, the total number of reported claims in the German construction 
industry remained constant between 2016 and 2020 according to an analysis by Böhmer et al. (2022). 
Furthermore, the analysis of the causes of damage shows that a limited number of factors are 
responsible for the majority of the damage, with approximately 90% of cases attributable to five main 
causes: lack of construction management, inadequate execution planning, neglect of protective 
measures, problems with communication at the interface, and execution or assembly errors. In the 
civil engineering sector, damage analyses show that structural defects represent the largest proportion, 
with façades and windows identified as the main weak points, accounting for approximately 43% of 
the damage cases. These findings underline the need for improved execution quality and more efficient 
interface coordination and confirm the recurrence of certain types and causes of damage. 

This observation is particularly critical for high-risk structures, and also applies to glass façades, whose 
use can go beyond purely aesthetic aspects, as research has shown that they can perform important 
structural functions, including horizontal bracing of buildings. It has also been proven that glazing can 
take on additional load-bearing functions, resulting in lighter and more cost-effective construction. 
(Haese 2013). This finding is particularly relevant for the development of timber structures, which 
traditionally have low stiffening potential but can provide significant thermal and structural benefits 
when combined with glass (Fadai and Winter 2014). However, horizontal loads such as wind or 
earthquakes are often underestimated during the planning phase, which can lead to considerable 
damage to the building bracing (Hochhauser 2011). 

On the one side, glass façades offer the opportunity for advanced construction, but on the other side, 
they present an increased safety risk if not designed properly. It is therefore important to recognize 
construction errors or damage in good time to avoid major failures in critical building structures. 
(Böhmer et al. 2022). Monitoring of such constructions is therefore essential. This can take many forms, 
from direct observations to automated data collection. The main objective is to gather and analyse 
information about the behaviour of a particular system to better understand the various processes 
that can lead to damage. Modern technologies offer a wide range of options for monitoring structural 
integrity, especially for the early detection and assessment of structural damage (Zurawski 2015). This 
is particularly important for the construction of glass façades.  

Monitoring with sensor technology ranges from the measurement of deformations, temperatures, 
humidity levels, and other factors to the detection of deviations from the characteristic movement 
patterns using acceleration sensors. It is also possible to monitor the quality of materials and 
components, as well as the ageing processes caused by mechanical or energetic influences 
(Krawtschuk et al. 2012). 

Therefore, Chapter 2.1 deals with the complexity of selecting appropriate sensor hardware for 
monitoring tasks. The criteria and considerations for sound decision-making and a specific example of 
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glass façade monitoring are presented here. Based on empirical data from sensor measurements, a 
more precise evaluation and optimization of real sensor performance can be achieved by integrating 
statistical methods, algorithms, and deep learning models into the monitoring process. The 
development of such numerical sensors is discussed in Chapter 2.2. Furthermore, both sensor types 
can support the development of a hybrid digital twin, which can be seen in Chapter 2,3. After these 
definitions, Chapter 3 presents the results of a case study in which a proposal is made for a numerical 
sensor that could be used for monitoring load-bearing glass façades. Whether the use of such 
numerical sensors can support the planning and optimization of real sensors for building monitoring 
on load-bearing glass façades is discussed in Chapter 4. In particular, the advantages of numerical 
sensors for monitoring such structures are highlighted. Finally, the findings of this work are 
summarized in Chapter 5. 

2. Methodology for Digital Twinning 

Structural monitoring is a comprehensive concept that includes both technology and methodology. It 
is important to note that the term 'monitoring' should not be confused with 'control'. Safety is not 
automatically achieved by the mere implementation of sensors. Rather, safety is the desired state, 
with monitoring serving as a tool for achieving this goal. Therefore, monitoring provides detailed 
insight into the specific behaviour of a system. By collecting data, which are then systematically 
categorized and analysed, valid safety concepts can be developed (Zurawski, 2015). 

The following discussion focuses exclusively on sensor technology that can be used for monitoring 
systems and evaluates its effectiveness and importance for the development of a digital twin for glass 
façades. The steps required to generate a numerical sensor from the hardware component of a sensor, 
i.e. a physical sensor, and thus create a hybrid digital twin are shown in Figure 1 and are explained in 
detail in the upcoming sections. 

 

Fig. 1: Overview of the digital twinning concept. 

 Physical Sensor 

Generally, a sensor is used to record both quantitative and qualitative measurements of physical, 
chemical, climatic, biological, and medical parameters. The sensor element converts nonelectrical 
input variables (e.g. temperature or pressure) into electrical output signals. These signals are further 
processed by signal-processing electronics to generate a sensor signal that is used for control or 
analysis (Homberg et al. 2023; Hering 2012). The measurement process of the sensor is included in Fig. 
2 in the red section. 
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Conducting significant measurements on structures using physical sensors requires careful selection 
and positioning of the sensors, which is fundamental for the validity of the measurement results 
(Becker et al. 2014). First, existing damage to structural integrity must be identified, and hypotheses 
about its causes and possible damage progression must be formulated. This can be done, e.g., through 
inspections and mapping of the damage or initial measurements on the building. Only then can a 
suitable sensor concept be developed for long-term measurements and the sensors can be placed at 
critical points. The ultimate goal of this customized measurement concept is to confirm the occurrence 
or propagation of damage using measurements, thus enabling preventive measures to be taken 
against further damage (Farrar and Worden 2007). 

 Numerical Sensor 

Advances in information technology are crucial for the development of modern surveillance systems. 
These technologies have enabled new ways of collecting, analysing, and using data on a large scale, 
and have fundamentally changed the way information is processed. In the context of increasing 
digitization and advanced data processing, the concept of big data has emerged and become 
indispensable for modern surveillance systems. Data serve as the basic raw material for all evaluation 
processes (Zurawski 2015 and Tomažic 2023). 

In the last three decades, scientists and researchers have begun to develop predictive models based 
on physically collected datasets. These models are called numerical sensors (Fig. 2, green section) and 
represent software-based systems that can provide information equivalent to their physical 
counterparts but are free from the environmental limitations of conventional sensor measurements 
(Fortuna et al. 2007, Kadlec et al. 2009 and Maier et al. 2021). Such a numerical sensor is characterized 
by considerably greater flexibility of use. It independently and autonomously generates an output 
signal based on the combination and aggregation of input data from the physical sensors. The causal 
relationships between the input and output variables are established by a process-specific model, 
which necessarily relies on current process information and therefore constantly requires new data 
(Homberg et al. 2023 and Stebner et al. 2022). 

Process models that are suitable for numerical sensors can be divided into two analysis methods. The 
first category generates secondary variables, which do not require direct process knowledge. These 
data-driven models, also known as black-box models, are based on comparisons and correlations 
between the input and output variables. According to Yuan et al. (2020), a number of these models 
have already been successfully established for soft-sensor applications, including Principal Component 
Analysis (PCA), Partial Least Squares (PLS), Support Vector Machine (SVM), and Artificial Neural 
Networks (ANN). In particular, ANNs have proven to be extremely versatile tools for modelling complex, 
nonlinear systems. This method can be used to build a virtual network from a wide variety of input 
data, which can approximate almost any causally related technical system. ANNs undergo a learning 
phase in which their parameters are identified by internal or external information. During this phase, 
information is passed through the network and adjustments in the structure and parameterization of 
the network occur through feedback loops. This allows the different decision paths of the network to 
be trained in specific cases, where connections can be modified and neurons can be adapted (Becker 
2010). 

Although the implementation of purely data-driven approaches is methodologically simple and does 
not require process expertise, there is a high risk of approximation and overfitting. This is because 
reliable investigation of the underlying physical relationships is suppressed. As system knowledge 
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increases, the transition from purely data-driven approaches to model-based methods becomes 
advantageous. Model-based approaches, also known as white-box models, incorporate this knowledge 
of the process into the modelling strategy. These models often use fundamental physical equations to 
establish relationships between measurement and process variables to build information systems 
(Becker 2010). 

 Hybrid Digital Twin 

In addition, observers can represent a special form of numerical sensors, which complements the 
numeric model with a mathematical model of the physical sensors. These models use differential 
equations to provide feedback between the measured and process variables. They are mainly used 
when basic knowledge of physical behaviour is available. This correction step leads to a continuous 
adaptation of the observed variables to the current process state to asymptotically stabilize the 
observer error (Homberg et al. 2023). 

The interaction between empirically collected data, which exhibit extensive, high-dimensional 
relationships, non-linearities, and redundancies, and numerical models, which aim to capture and 
simulate these complex real-world processes, form the basis for the development of a hybrid digital 
twin, Fig. 2, blue section. This connection can independently generate measurements that predict the 
structural behaviour of systems, and thus enable recommendations for action. In addition, physical 
sensors can be continuously validated by a digital twin by comparing the predicted sensor 
measurements with the actual measurements.  

3. Results 

Once glazing contributes to building bracing, it becomes a critical safety element. Homberg et al (2023) 
emphasise the need for redundant structures in such systems to minimise the risk of total failure. 
However, the implementation of redundancy in glazing systems is challenging. The reasons for this can 
be the complexity of the glass façade technology and the associated maintenance. Specific knowledge 
is essential for identifying and solving problems. Additionally, the brittleness of glass creates the risk 
of sudden breakage without warning. Nevertheless, a form of analytical redundancy can be achieved 
using numerical sensors, which allows both measurable and immeasurable process variables to be 
estimated (Homberg et al. 2023). These sensors record the load-bearing conditions in glazing and can, 
therefore, identify redundancies by comparing them with a digital twin. In addition, numerical sensors 
offer advantages in situations in which direct measurements are not feasible, a sensor fails, or the cost 
of direct measurements is prohibitive. 

In the following study, the feasibility of using numerical sensors for load-bearing glass panes is 
investigated to provide the first basis for a virtual prediction model. 

In an experimental setup to investigate the load-bearing behaviour of stiffening glazing (Fig. 2), as 
performed by Neumer (2018) under laboratory conditions, a composite element consisting of a steel 
frame, which should correspond to hinged frame corners, and an 8 mm thick monolithic pane of single-
pane safety glass is subjected to a load test parallel to the pane. The glass used in this test was linearly 
supported at all edges. The load was applied using a hydraulic cylinder acting on the corner point of 
the frame. The glazing deformation was recorded orthogonally at selected points using displacement 
transducers. Glazing failure was detected at a load of approximately 44 kN when it jumped out of the 
steel frame. 
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Fig. 2: Extended experimental setup based on the research of Neumer (2018). 

However, this experimental setup can be used only for one-off measurements under laboratory 
conditions. The aim is to adapt this experiment to long-term measurements of real glass façades in a 
natural environment. This requires a more robust sensor network to record the deformation of glass 
panes. Therefore, conventional displacement transducers should be replaced by Fibre-Bragg-Grating 
sensors integrated into glazing. The possible positioning of these fibre-optic sensors is shown 
schematically in Fig. 2. Because the function of the sensors in this concept must be maintained 
consistently over a long period of time, the inspection and verification of the sensor quality is of great 
importance. It is proposed to complement the measurement data from physical sensors with a 
numerical sensor concept based on the findings of previous experiments and adapted on an ongoing 
basis.  

In this case study, based on the test setups shown in Figs. 2 and 3, an ANN was used to train the 
simulation of the deformation behaviour at point P2 using the input data from points P1, P3, P4, and 
M. The influence of the spatial coordinates of the measurement points was considered. However, 
other physical conditions were not included in the black-box analysis. The maximum deformation value 
calculated using ANN at measurement point P2 with a load of 44 kN was 0.548 mm. This was compared 
with the measured average deformation value of 0.622 mm. The measured and simulated deformation 
values are presented in Fig. 3, which shows the convergence of the simulated output data with the 
measured input data. 

 

Fig. 3: Evaluation of the numerical sensor for measuring point P2. 
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According to Backhaus et al. (2015), the ANN used to determine the deformations at measurement 
point P2 can be described as follows. 

In general, a network consists of neurons that receive signals from pre-connected neurons which are 
processing many incoming signals and weight them according to their association with a single input 
value. Neurons are organized in a network; in this case, a feed-forward network was used were 
neurons are arranged in layers, with information being processed strictly from the input layer to the 
output layer. 

Figure 4 shows the structure of the applied two-layer neural network, where the first layer forms an 
input layer with four neurons (P1, P3, P4, and M). This layer receives information from the 
measurements as well as the positions of the measuring points and forwards it to the following layers 
of neurons. However, the input layers are not counted. Neurons 5 to 100 represent the hidden layer, 
in which the signals of the upstream neurons are aggregated and nonlinear transformations are 
performed. This allows the network to represent nonlinear relationships between the input and output 
values. Neuron P2 provides an output layer that models the independent variables. 

To make the training process of a neural network transparent, it is useful to take a closer look at a 
specific neuron - the output neuron, for example (Fig. 4). Neural networks are characterized by the 
fact that the internal hidden layers that process input data do not require fixed relationships or 
theoretical assumptions. The network learns autonomously by optimizing the activation of the neurons 
such that the resulting output data represent the actual measured values as accurately as possible. 

For this type of information processing, the signals arriving at a neuron are first combined into an 
overall input value by using a propagation function (netk). The total input value is then processed by 
an activation function (f), which determines whether the neuron is activated. A common form of this 
activation function is the sum function, which calculates the total input value from the sum of weighted 
input signals. 

A neuron is activated only if the calculated input value (net) is equal to or exceeds the specified value 
(oj). The weights (wjk) within the propagation function and the parameters of the activation function 
were adjusted during the learning process until the output data of the neurons represented the 
observed empirical data as accurately as possible. 

 

Fig. 4: Basic structure of a two-layer neural network and information processing of an active neuron. 
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After training, the model was validated using a separate dataset of P2 to assess its accuracy and 
generalizability. The validation was conducted by predicting the output data for a new set of input data 
previously unknown to the network, including their spatial positions. The evaluation can be seen in Fig. 
3. The performance of the model in this task provides insight into how well it has learned to understand 
the relationship between data and spatial information and to apply this understanding to new, 
unknown data. 

4. Discussion 

In the initial investigations of a numerical sensor for stiffening glass façades, the analysis model used 
proved to be appropriate. Not only was there a significant correlation with the validation datasets, but 
divergences between the measured sensor data were also revealed. In particular, the data from 
displacement transducer 1 showed striking deviations, which were verified by analysis using an ANN. 
Therefore, the possibility of a hybrid monitoring system combining real and virtual load-bearing glass 
façades is feasible. However, at this point, it is important to emphasize the precision with which the 
sensor positions are determined. Accurate localization is essential for the ANN to be effective in 
pattern recognition and for the numerical sensors to be adequately trained on this basis. It is suggested 
that the positioning of real measurement systems be recorded using 3D measurement technology to 
determine the measurement points with the highest possible accuracy. Even small deviations of the 
virtual model from physical reality can have a significant impact on the results of the numerical sensors. 

5. Conclusion 

This paper introduces the concept of a numerical sensor as a key element for creating a hybrid digital 
twin focused on the monitoring of load-bearing glass façades. This study highlights the integration of 
numerical and physical sensors to optimize the accuracy and reliability of structural assessments of 
load-bearing glass façades. The analysis of empirical data and the subsequent development of a 
numerical model will not only deepen the understanding of redundancies in glass façades but also 
provide a basis for future safety strategies in such systems. 

In addition, the integration of 3D measurement technologies will be implemented in future research 
to minimize the differences between virtual models and their real counterparts, thus increasing the 
accuracy of numerical sensors. 

Furthermore, as the research progresses, the aim is to expand the data basis for training numerical 
models, investigate more complex data analysis algorithms, and improve the model's ability to adapt 
to new and unexpected conditions to predict damage scenarios on stiffening glazing more precisely. 
The future goal is to reliably predict the load scenarios of complex structures of stiffening glass façades. 
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