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Abstract 

The application of structural topology optimization to glass may enable the design of architectural and 
lightweight glass structures. There is still a lack of specific topology optimization tools for such a brittle 
material. This work establishes a topology optimization computational method for the design of glass 
structures fabricated via abrasive water-jet cutting. This allows to obtain load-bearing glass 
components which can have a high strength-to-weight ratio while accounting for changes in 
mechanical properties induced by the fabrication process. Here, we consider a volume minimization 
problem in which global displacement and global maximum principal stress design criteria are 
considered. The optimization algorithm is developed based on a density method with a robust filtering 
method. The Method of Moving Asymptote (MMA) is used as the standard optimizer. The numerical 
examples are presented in both 2D and 3D design structures. We perform topology optimization with 
mechanical properties specifically obtained experimentally for water-jet cut glass. We find that 
customized topology optimization can minimize effectively the volume of the structures and improve 
structural performance.  
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1. Introduction 

Glass has been used in modern architecture and civil engineering for various applications. The 
significantly high self-weight of today’s glass products is a critical factor for connections and wide-span 
design (Hänig and Weller 2020). Heavyweight also introduce significant challenges during the 
transportation and installation stages, requiring careful planning, resources, and expertise to 
overcome. Moreover, addressing the high usage of materials in the construction industry is a major 
concern of CO2 emissions (Choi et al. 2017). This seems to be unsustainable for using glass in the 
construction industry. Hence, lightweight glass structures with curved shapes or hold filling in the 
structures are a key leading to highly innovative glazing solutions (Belis et al. 2019; Louter et al. 2018; 
Silveira et al. 2018).  

Currently, the development of lightweight design strategies for glass structures is based on the 
composite laminate concept (Hänig and Weller 2020, 2021, 2022; Kothe et al. 2021; Pfarr and Louter 
2023; Shitanoki et al. 2015) which is applied to most structural glass applications. Combining a strong 
glass material with a robust interlayer material can result in thin structural composite glass panels.  

Alternatively, topology optimization is an innovative structural design solution that may enable to 
design lightweight structures and structural shapes for a wide range of application purposes. The 
challenge of topology optimization design for glass can be both fabrication and computational design 
as the optimized structure has irregular shapes and the solution of topology optimization obtained 
from mathematical programming and finite element techniques is computationally intensive (Giraldo-
Londoño et al. 2022).  

From the latest advancements in glass fabrication methods, 3D printing of glass can create small-scale 
glass objects, as demonstrated by Inamura et al. (2018) and Klein et al. (2015). For larger-scale 
structures, 2D structural glass shapes are rather fabricated using abrasive water-jet (AWJ) or laser 
cutting techniques, as noted by Nisar et al. (2013). These cutting methods enable the fabrication of 
structures as large as the size of the largest available glass product. Furthermore, the cut glass pieces 
can be laminated to enhance safety and structural integrity. By combining advanced cutting methods 
with lamination techniques, it may become possible to create large-scale 3D structural glass assemblies. 
This approach is akin to brick construction, where individual components are assembled to form a 
cohesive structure. In our topology optimization approach, we will rely on mechanical properties 
characterised specifically on AWJ cut glass. 

Recently, a few research efforts have been made to enable structural topology optimization for such a 
brittle material. In turn, enabling the design of cast glass structures such as bridges, slabs, shells, and 
connections (Damen et al. 2022; Daniella 2020; Koopman 2021; Stefanaki 2020). The studies mainly 
focused on the application of commercial topology optimization tools to design mass-optimized 
structures to reduce the annealing time for the fabrication process. The design was based on 
compliance-based (elastic energy) or Von Mises stress-based optimization. In such cases, compliance 
optimization is related to stiffness optimization. Von Mises stress is often appropriate for evaluating 
the failure of ductile materials (Duysinx and Bendsoe 1998).  

Now for brittle materials specifically, there are very few topology optimization developments based 
on maximum principal stress. The majority of research works have adopted the Von Mises stress. 
Nonetheless, Chen et al. (2021) developed global maximum principal stress-constrained topology 
optimization based on the Bidirectional Evolutionary Structural Optimization (BESO) method for 2D 
concrete structures. The p-norm aggregation function was used to compute the peak stress value and 
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was constrained to be smaller than the stress limit. Using an aggregation function in stress-constrained 
topology optimization is an effective technique for collecting millions of constraints to one constraint 
(Bendsøe and Sigmund 2003; Duysinx and Sigmund 1998; París et al. 2009). However, the aggregation 
function estimates the value greater than the real maximum value. Moreover, solving the volume 
minimization problem under stress constraints by the BESO method may not be achieved because the 
optimizer algorithm requires a predefined volume (Querin et al. 2017). Later, Giraldo-Londoño et al. 
(2022) proposed another topology optimization algorithm based on local maximum principal stress 
constraints solved by Solid Isotropic Material with Penalization (SIMP) method for 2D and 3D structures. 
In these recent studies, the maximum principal stress constraint alone could not enable the 
optimization to converge, thus the classical compliance objective was added to reach local minima. 
Compliance optimization allows to control indirectly structural displacement which is a limiting factor 
in structural engineering design. Otherwise, controlling displacement from compliance optimization 
design is not an effective solution because many compliance optimization design cases have to be 
tested to reach a predefined displacement condition. Lastly, we observe that self-weight load was 
neglected in the previous studies while it is an important design load in structural civil engineering 
design (Zhang et al. 2021) which influences optimal topologies obtained from the SIMP method 
(Bruyneel and Duysinx 2005).   

Thus, the purpose of this work is to implement an algorithm to perform topology optimization for glass 
structures fabricated by the AWJ cutting method. We focus on the volume minimization problem 
which is equivalent to weight minimization by considering maximum principal stress and displacement 
as the design criteria. Self-weight load is also included in our optimization process. Moreover, a scaling 
coefficient introduced by Le et al. (2010) is used to treat the p-norm aggregation function. This 
formulated topology optimization algorithm is suited for real engineering design situations and differs 
from topology optimization performed in previous works (Chen et al. 2021; Giraldo-Londoño et al. 
2022). The SIMP method is used to solve our topology optimization problem. To validate numerical 
results, the mechanical performance of the optimized design structure is verified with the commercial 
FE software ABAQUS.  

The remaining parts of this paper are organized as follows: computational method including SIMP 
topology optimization method, stress and displacement aggregation, and topology optimization 
problem is presented in section 2. The mechanical characterization of glass used in our numerical study 
is described in section 3. Two numerical examples are demonstrated to show the effectiveness of our 
algorithm in section 4. Lastly, a conclusion is drawn in section 5. 

2. Computational method 

This section presents a topology optimization method framework with a finite element method. Then, 
an aggregation technique is introduced to estimate the peak value instead of using the max(.) operator 
in the optimization problem. Then topology optimization problem is introduced. The latter is a 
computational optimization algorithm. 

 Topology optimization 

Regarding topology optimization design, we address two structural behaviours and one physical 
property such as a peak of maximum principal stress, a maximum vertical downward displacement, 
and a total volume equivalent to the weight or mass of a structure, respectively. Stress and 
displacement are chosen because this commonly happens in structural engineering design criteria. 
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Volume allows to reduce the weight of the structure under a set of predefined conditions. To compute 
such properties, the structure that is under a set of applied and self-weight loads and boundary 
conditions in a design region (Ω) as seen in Fig. 1, is discretized into finite elements. With this 
discretised technique, each finite element has the same brittle linear isotropic material properties and 
elemental area (2D) or volume (3D). In this work, each finite element has the same square and cube 
shape for 2D and 3D structures, respectively. 

 

Fig. 1: Finite element mesh. 

The mechanical behaviour of the solid structure can be evaluated from the nodal displacement of each 
element which is computed following the equilibrium FE equation below: 

𝐾𝐾𝐾𝐾 = 𝐹𝐹𝑤𝑤 + 𝐹𝐹𝑑𝑑 (1) 

where 𝐾𝐾 is the global stiffness matrix, 𝐾𝐾 is the global nodal displacement vector, 𝐹𝐹𝑤𝑤 is the global self-
weight force vector, and 𝐹𝐹𝑑𝑑 is the global applied force vector. 

We used a density method to find the optimized structure. In this method, each finite element has a 
design density variable, 𝑥𝑥𝑖𝑖 ∈ [0,1], which represents the structure by 𝑥𝑥𝑖𝑖 = 0 is void, 𝑥𝑥𝑖𝑖 = 1  is a solid 
glass material, and 0 < 𝑥𝑥𝑖𝑖 < 1 is intermediate material. To minimize intermediate material which is 
known as the grey material and to solve checkerboard and mesh-dependency problems in the density 
method (Sigmund 1994), the robust filtering method (Guest et al. 2004; Sigmund 2007; Wang et al. 
2011) is applied to the design variable, 𝑥𝑥𝑖𝑖. The modified density is now called physical density variables, 
�̿�𝑥𝑖𝑖, defined by:  

�̿�𝑥𝑖𝑖 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝛽𝛽𝛽𝛽)+𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝛽𝛽(𝑥𝑥�𝑖𝑖−𝛽𝛽))
𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝛽𝛽𝛽𝛽)+𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝛽𝛽(1−𝛽𝛽))

 . (2) 

Here, 𝜂𝜂 is a threshold value, 𝛽𝛽 is the projection parameter, 𝑁𝑁𝑒𝑒,𝑖𝑖  is the neighbourhood set of elements 
within the allowable filtering region of radius, 𝑟𝑟𝑚𝑚𝑖𝑖𝑡𝑡 , 𝑟𝑟𝑗𝑗  is the central distance from element i-th to 
element j-th, x�𝑖𝑖 is the filtered density variable obtained by:  

Fw 

Fd 

(Ω) 

Continuum solid structure 

Discretized structure 

Element i-th 
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𝑥𝑥�𝑖𝑖 =
∑ 𝑤𝑤𝑗𝑗𝑣𝑣𝑗𝑗𝑥𝑥𝑗𝑗𝑗𝑗∈𝑁𝑁𝑒𝑒,𝑖𝑖
∑ 𝑤𝑤𝑗𝑗𝑣𝑣𝑗𝑗𝑗𝑗∈𝑁𝑁𝑒𝑒,𝑖𝑖

 (3) 

and 𝑤𝑤𝑗𝑗  is the weighting function defined as:  

𝑤𝑤𝑗𝑗 = 𝑟𝑟𝑚𝑚𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑗𝑗  . (4) 

The total volume ratio, stiffness, and self-weight load of the structure are now formulated to be the 
functions of physical density variable and can be computed by following: 

𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = ∑ 𝑣𝑣𝑖𝑖�̿�𝑥𝑖𝑖𝑛𝑛𝑒𝑒𝑛𝑛
𝑖𝑖=1
𝑉𝑉0

  (5) 

𝐾𝐾 = ⋃ 𝐸𝐸𝑖𝑖(�̿�𝑥𝑖𝑖)𝑘𝑘𝑖𝑖𝑡𝑡𝑒𝑒𝑡𝑡
𝑖𝑖=1 ,   𝑘𝑘𝑖𝑖 = ∫ 𝐵𝐵𝑖𝑖𝑇𝑇𝐷𝐷0𝐵𝐵𝑖𝑖𝑑𝑑𝑑𝑑𝑣𝑣𝑖𝑖

  (6) 

𝐹𝐹𝑤𝑤 = ∏ 𝐹𝐹𝑖𝑖𝑤𝑤𝑡𝑡𝑒𝑒𝑡𝑡
𝑖𝑖=1 ;     𝐹𝐹𝑖𝑖𝑤𝑤 = �

   1
4
�̿�𝑥𝑖𝑖𝜌𝜌0𝑑𝑑𝑖𝑖𝑔𝑔 {0  1 … 0  1}1×8

𝑇𝑇  𝑓𝑓𝑓𝑓𝑟𝑟 2𝐷𝐷                
1
8
�̿�𝑥𝑖𝑖𝜌𝜌0𝑑𝑑𝑖𝑖𝑔𝑔 {0  1   0 … 0  1   0}1×24

𝑇𝑇  𝑓𝑓𝑓𝑓𝑟𝑟 3𝐷𝐷
  (7) 

where 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  is the total volume ratio of the structure, 𝑉𝑉0  is the total volume of the initial design 
structure, 𝑛𝑛𝑛𝑛𝑛𝑛  is the total number of finite elements, ⋃(∙) is the assembly operator matrix for the 
global stiffness matrix, 𝑑𝑑𝑖𝑖  is the elemental area (2D) or volume (3D), 𝐸𝐸𝑖𝑖(�̿�𝑥𝑖𝑖) is the interpolation function 
for stiffness of element i-th, 𝑘𝑘𝑖𝑖 is the stiffness matrix of element i-th that can be obtained by Gaussian 
integration, 𝐵𝐵𝑖𝑖 is a strain-displacement matrix of element i-th that can be obtained from the shape 
function based on displacement-based finite element, 𝐷𝐷0 is the constant elastic constitutive matrix of 
the solid material, ∏(∙) is the assembly operator vector for the global self-weight force vector, 𝐹𝐹𝑖𝑖𝑤𝑤 is 
the nodal self-weight force vector of element i-th, 𝜌𝜌0 is the physical density of the material, and 𝑔𝑔 is 
the gravitational acceleration (9.81 m/s2). 

In this work, the interpolation function for stiffness, 𝐸𝐸𝑖𝑖(�̿�𝑥𝑖𝑖) is based on the modified SIMP (Bruyneel 
and Duysinx 2005; Sigmund 2007) defined as below:  

𝐸𝐸𝑖𝑖(𝑥𝑥𝚤𝚤� ) = �
𝐸𝐸𝑚𝑚𝑖𝑖𝑡𝑡 + �̿�𝑥𝑖𝑖𝑘𝑘(𝐸𝐸0 − 𝐸𝐸𝑚𝑚𝑖𝑖𝑡𝑡), 𝑥𝑥𝑡𝑡ℎ < �̿�𝑥𝑖𝑖 ≤ 1

𝐸𝐸𝑚𝑚𝑖𝑖𝑡𝑡 + �̿�𝑥𝑖𝑖𝑥𝑥𝑡𝑡ℎ𝑘𝑘−1(𝐸𝐸0 − 𝐸𝐸𝑚𝑚𝑖𝑖𝑡𝑡), 0 ≤ �̿�𝑥𝑖𝑖 ≤ 𝑥𝑥𝑡𝑡ℎ
 (8) 

where 𝑥𝑥𝑡𝑡ℎ is the threshold density value, 𝑘𝑘 is the penalty factor for the SIMP model, 𝐸𝐸𝑚𝑚𝑖𝑖𝑡𝑡 is Young’s 
modulus of void elements, and 𝐸𝐸0 is Young’s modulus of solid elements. 

 Stress and displacement aggregation 

The largest value of maximum principal stress and vertical downward displacement are computed by 
using an approximated function, the p-norm function below: 

𝜎𝜎𝑃𝑃𝑃𝑃 = �∑ ∑ 𝐻𝐻𝐻𝐻(𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖𝑗𝑗)𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖𝑗𝑗
𝑃𝑃1𝑡𝑡𝑛𝑛

𝑗𝑗=1
𝑡𝑡𝑒𝑒𝑡𝑡
𝑖𝑖=1 �

1
𝑃𝑃1 (9) 

𝐷𝐷𝑃𝑃𝑃𝑃 = �∑ 𝐻𝐻𝑑𝑑(𝑑𝑑𝑣𝑣𝑒𝑒𝑣𝑣𝑡𝑡,𝑖𝑖)𝑑𝑑𝑣𝑣𝑒𝑒𝑣𝑣𝑡𝑡,𝑖𝑖
𝑃𝑃2𝑡𝑡𝑡𝑡𝑑𝑑

𝑖𝑖=1 �
1
𝑃𝑃2 (10) 

where 𝑛𝑛𝑔𝑔 is the number of stress evaluation points of an element i-th, in this study 𝑛𝑛𝑔𝑔 = 5 points for 
2D element and 𝑛𝑛𝑔𝑔 = 9  points for 3D element, 𝑛𝑛𝑓𝑓𝑑𝑑 is the total number of finite element nodes, 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 
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is the maximum principal stress, 𝑃𝑃1  is the p-norm power of stress, 𝑑𝑑𝑣𝑣𝑒𝑒𝑣𝑣𝑡𝑡  is the nodal vertical 
displacement, 𝑃𝑃2 is the p-norm power of displacement, 𝐻𝐻𝐻𝐻(∙) is the Heaviside step function used to 
eliminate compressive stress defined by: 

�
1 𝑖𝑖𝑓𝑓 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 0 (𝑡𝑡𝑛𝑛𝑛𝑛𝐻𝐻𝑖𝑖𝑓𝑓𝑛𝑛)

0 𝑖𝑖𝑓𝑓 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 < 0 (𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐𝑟𝑟𝑛𝑛𝐻𝐻𝐻𝐻𝑖𝑖𝑓𝑓𝑛𝑛)  (11) 

and 𝐻𝐻𝑑𝑑(∙)  is the Heaviside step function used to eliminate upward vertical displacement defined by: 

�
1 𝑖𝑖𝑓𝑓 𝑑𝑑𝑣𝑣𝑒𝑒𝑡𝑡 ≥ 0 (𝑑𝑑𝑓𝑓𝑤𝑤𝑛𝑛𝑤𝑤𝑑𝑑𝑟𝑟𝑑𝑑)
0 𝑖𝑖𝑓𝑓 𝑑𝑑𝑣𝑣𝑒𝑒𝑣𝑣𝑡𝑡 < 0 (𝑢𝑢𝑐𝑐𝑤𝑤𝑑𝑑𝑟𝑟𝑑𝑑)    . (12) 

As the p-norm function provides the estimated maximum value greater than the real maximum value 
obtained from the max(.) operator, a scaling coefficient, 𝑐𝑐 introduced by Le et al. (2010) is used to 
approximate the maximum value by: 

𝜎𝜎𝑐𝑐𝑃𝑃𝑃𝑃 = 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝜎𝜎𝑃𝑃𝑃𝑃 ≈ 𝑐𝑐𝑑𝑑𝑥𝑥 (𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚)  (13) 

𝐷𝐷𝑐𝑐𝑃𝑃𝑃𝑃 = 𝑐𝑐𝑑𝑑𝐷𝐷𝑃𝑃𝑃𝑃 ≈ 𝑐𝑐𝑑𝑑𝑥𝑥 (𝑑𝑑𝑣𝑣𝑒𝑒𝑣𝑣𝑡𝑡) . (14) 

The scaling coefficient, 𝑐𝑐 is computed iteratively by:  

𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡 = 𝛼𝛼𝑡𝑡 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛−1

𝜎𝜎𝑛𝑛−1𝑃𝑃𝑁𝑁 + (1 − 𝛼𝛼𝑡𝑡)𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡−1  (15) 

𝑐𝑐𝑑𝑑𝑡𝑡 = 𝛼𝛼𝑡𝑡 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛−1

𝐷𝐷𝑛𝑛−1𝑃𝑃𝑁𝑁 + (1 − 𝛼𝛼𝑡𝑡)𝑐𝑐𝑑𝑑𝑡𝑡−1 . (16) 

Here, 𝑛𝑛 is the number of iterations, 𝛼𝛼 is a parameter controlling the scaling coefficient, 𝑐𝑐 between 
iterations, in this study 𝛼𝛼 = 0.5 for all iterations, and 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚0 = 𝑐𝑐𝑑𝑑0 = 1. 

Similar to stiffness, the maximum principal stress is multiplied by a relaxation coefficient to avoid stress 
singularity (Le et al. 2010) and is defined below: 

𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖𝑗𝑗 = �̿�𝑥𝑖𝑖
𝑄𝑄𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖𝑗𝑗

0  (17) 

where 𝑄𝑄 is the stress relaxation factor and 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖𝑗𝑗
0  is the maximum principal stress of element i-th 

evaluated at point j-th.  

 Topology optimization problems 

With the above topology optimization method framework, we define a mathematical expression for a 
volume minimization problem under stress and displacement constraints given by:  

𝑓𝑓𝑖𝑖𝑛𝑛𝑑𝑑:𝑋𝑋 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑡𝑡𝑒𝑒𝑡𝑡}𝑇𝑇
𝑐𝑐𝑖𝑖𝑛𝑛: 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝐻𝐻𝑢𝑢𝑠𝑠𝑠𝑠𝑛𝑛𝑐𝑐𝑡𝑡 𝑡𝑡𝑓𝑓: 𝐷𝐷
𝑃𝑃𝑁𝑁

𝐷𝐷𝑛𝑛𝑖𝑖𝑚𝑚
− 1 ≤ 0

𝜎𝜎𝑃𝑃𝑁𝑁

𝜎𝜎𝑛𝑛𝑖𝑖𝑚𝑚
− 1 ≤ 0

  (18) 
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where 𝐷𝐷𝑡𝑡𝑖𝑖𝑚𝑚 is the allowable vertical downward displacement and 𝜎𝜎𝑡𝑡𝑖𝑖𝑚𝑚 is the predicted failure stress of 
glass. 

 Computational algorithm 

The finite element and filtered density developed by Andreassen et al. (2011) and Liu and Tovar (2014) 
are used in our algorithm development code for 2D and 3D structures, respectively. The Method of 
Moving Asymptote (MMA) proposed by Svanberg (1987) is used as the standard optimizer. The 
optimization algorithm is summarized as follows: 

1. Initialization state: design domain, loading, boundary conditions, material properties, SIMP, filtering, 
iteration parameters 

2. Discretize the design domain into FE and solve the finite equation to obtain displacement, U 
3. Compute the objective function, constraints, and sensitivities 
4. Start iteration to meet optimization conditions 
5. Update design variable by MMA optimizer 
6. Check iteration convergence, the change in design variables  
7. Go to step 3 if iteration convergence does not reach 

3. Mechanical characterization of glass material 

A float glass sheet with a thickness of 5 mm was mechanically cut by an AWJ machine (Flow Mach2-
2030c) into rectangular beams with dimensions of 100 × 10 mm2 to evaluate the failure stress through 
a 3-point bending test as shown in Fig. 2. In this experiment, a universal testing machine Lloyd LR 50K 
connected with a loading cell of 1 kN was used. The test was performed on 12 beams without polishing 
at the room temperature of 22 °C. The processed edge of the glass beams was placed on the two 
similar steel support half rollers with a radius of 5 mm and a bending span of 64 mm. The thickness of 
glass is the width of the beams. The mid-span loading was applied through a spherical tip cone indenter 
along the beam width. The loading rate was set as the displacement imposing with a rate of 0.50 mm. 
The failure force was automatically detected by the machine. The failure strength of each specimen 
was calculated at the mid-span and defined by the flexural tensile stress below: 

𝜎𝜎𝑡𝑡 = 3𝐹𝐹𝑓𝑓𝑡𝑡
2𝑡𝑡ℎ2

 (19) 

where 𝐹𝐹𝑓𝑓 is the failure force, 𝑛𝑛 is the bending span, ℎ is the height of the beam, and 𝑡𝑡 is the width of 
the beam. 

As glass is a brittle material, the stress distribution of specimens does not fit with the normal 
distribution. The predicted failure stress of glass was calculated by using Weibull statistics at the failure 
probability of 63%. The reader is directed to (Bergman 1984; Sullivan and Lauzon 1986) for further 
information on how to characterize brittle material strength with Weibull distribution. Table 1 shows 
the experimental results of the 3-point bending test and other properties such as Young’s modulus, 
Poisson ratio, and mass density that were obtained from the previous research. 
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Fig. 2: Beam specimens (left) and 3-point bending test (right). 

Table 1: Mechanical properties of float glass used in optimization. 

 3-point bending test   Yoshida et al. (2005) 

Predicted  

failure strength 

Mean  

flexural strength 

Standard  

deviation 
 

Young’s  

modulus 

Poisson  

ratio 

Mass  

density 

[MPa] [MPa] [MPa]  [GPa] - [g.cm-3] 

51.80 49.74 4.18  72 0.21 2.55 

4. Numerical results 

This section outlines the results of our implementation of the method introduced in section 2. The 
calculation is carried out in MATLAB R2023a. Two numerical examples are presented. All the 
calculation is run on a cluster with an Intel(R) Xeon Gold 6348R CPU @ 2.6GHz and 503GB of RAM. The 
following parameters are used in all case examples. Material properties are taken from Table 1. 
Young’s modulus of the void element is 10-3 MPa. Filtering parameters, 𝜂𝜂 = 0.5  and 𝛽𝛽  is double 
increased from 1 until 𝛽𝛽𝑚𝑚𝑡𝑡𝑥𝑥 = 16 for every 50 iterations. The p-norm power used for displacement 
and stress constraints is 40. Stress and SIMP penalty power are 0.5 and 3, respectively. Lastly, threshold 
density, 𝑥𝑥𝑡𝑡ℎ is 0.20.  The optimized results combined with a numerical validation of a 2D optimized 
structure demonstrate the efficacy of our topology optimization. 

 2D MBB beam 

The first example is the MBB (Messerschmitt–Bölkow–Blohm) beam subjected to self-weight load and 
a point load F = 918 N at the mid-span as illustrated in Fig. 3. The height and length of the beam are 
100 mm and 500 mm, respectively. Only a half part is optimized as the beam structure is symmetric. 
The half-MBB beam is discretized into 100 × 250 elements with a surface area of 1 × 1 mm2 for each 
element. The load F/2 is distributed equally on three nodes to avoid stress singularity at the loading 
point. The symmetric support is constrained on the nodes along the height of the beam. The end roller 
support is constrained on two nodes. The displacement limit is set to 0.80 mm and the filtering radius 
is 𝑟𝑟𝑚𝑚𝑖𝑖𝑡𝑡 = 6 mm. 
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Fig. 3: MBB beam example. 

 

Fig. 4: Optimized half-MBB beam. 

 

(a) 

  

(b) (c) 

Fig. 5: Iteration history of (a) volume ratio, (b) vertical downward displacement, and (c) maximum principal stress. 
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Fig. 4 shows the volume-optimized half-MBB beam. The minimized volume is 0.62% of the original half-
MBB beam. The evolutions of volume, stress, and displacement with iteration are presented in Fig. 5 
(a-c), respectively. The optimized results show that both stress and displacement constraints satisfy 
the limit conditions and are close to the limit bounds. The p-norm stress and displacement at the 
optimum state are 51.75 MPa and 0.7997 mm, respectively. These values are close to the real 
maximum values obtained from the max(.) operator which are 51.94 MPa, and 0.7996 mm, 
respectively. This shows the aggregation technique combined with a scaling coefficient approximates 
efficiently the peak value. The real maximum stress value is greater than the stress limit of 0.27%.  
Compared to stress in the original half-MBB structure, topology optimization can minimize the 
maximum stress from 65.42 MPa to 51.94 MPa as shown in Fig. 6 (a). This reveals that topology 
optimization for glass can improve structural performance with a significant weight reduction.  

 

 
(a) 

  

(b) (c) 

Fig. 6: Maximum principal stress map of (a) original half-MBB beam obtained from the customized tool, (b) optimized half-
MBB beam obtained from FEA ABAQUS, and (c) optimized half-MBB beam obtained from the customized tool. 

The contour of the optimized half-MBB beam is extracted with a density threshold value of 0.3 to verify 
mechanical behaviour with FE ABAQUS 2023. The contour coordinates are fitted by the Spline in 
ABAQUS sketching. 4-node quadrilateral finite elements with arbitrary shapes are used to discretize 
the beam. Fig. 7 illustrates the geometry, discretized shape, and loading and boundary models of the 
beam employed for the validation. In this numerical validation, material properties, loading, and 
boundary conditions are the same as in the optimization design. As seen in Fig. 6 (b), the maximum 
stress obtained from FEA ABAQUS is 52.13 MPa greater than the stress limit of 0.63%. Both maximum 
principal stress distribution maps obtained from FEA ABAQUS and the customized optimization tool 
are quite similar as shown in Fig. 6 (b) and (c), respectively. Moreover, the smallest value of minimum 
principal stress and maximum vertical downward displacement of FEA ABAQUS are -308.02 MPa and 
0.7519 mm as depicted in Fig. 8 (a-b), respectively. This shows that the post-processing does not 
influence the optimized results. The minimum value of minimum principal stress is still below the range 
of the compressive stress limit of 1000 MPa of float glass (Ashby and Jones 2013) even though there is 
no constraint on this stress. 
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(a) 

 
(b) 

 
(c) 

Fig. 7: FE ABAQUS validation of optimized half-MBB beam;  
(a) post-processed beam, (b) mesh beam, and (c) loading and boundary models. 
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(a) 

 

(b) 

Fig. 8: FEA ABAQUS of optimized half-MBB beam;  
(a) minimum principal stress distribution, and (b) vertical displacement (downward in positive and upward in negative). 

 

Fig. 9: 3D stair tread. 
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 3D structure 

In this section, we perform topology optimization of a 3D stair tread subjected to self-weight load and 
a uniform load of 3 N/cm2 as shown in Fig. 9. The structure is discretized into 23 724 elements with a 
finite element volume of 1 × 1 × 1 cm3. To reduce computational time, only one-quarter of the structure 
is optimized as the structure is symmetric. The displacement limit is set to 0.20 mm and the filtering 
radius is 𝑟𝑟𝑚𝑚𝑖𝑖𝑡𝑡 = 17 mm.  

 

 

Fig. 10: 3D optimized stair tread. 

Fig. 10 shows the optimized structure with a minimized volume ratio of 0.26. Fig. 11 illustrates the 
iteration history of volume ratio, stress, and displacement, respectively. Both stress and displacement 
constraints are satisfied the limit conditions. The maximum displacement and stress of the optimized 
structure are 0.20 mm and 13.94 MPa, respectively. These values match the corresponding 
approximated p-norm values which are 0.20 mm and 13.94 MPa, respectively. 

 

(a) 

  

(b) (c) 

Fig. 11: Iteration history of (a) volume ratio, (b) vertical downward displacement, and (c) maximum principal stress. 
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5. Conclusion 

This paper has presented a topology optimization including self-weight load for the structural design 
of glass under maximum principal stress and displacement design criteria using the SIMP method. This 
implement topology optimization tool is suitable for practical engineering design. Numerical 
applications were performed for 2D and 3D structures for we used mechanical material properties 
specifically characterised on AWJ cut glass. The optimized results combined with a numerical validation 
of mechanical behaviour show that the proposed algorithm can effectively reduce structural weight 
and increase load-bearing resistance. These findings had not been reported in the literature for 
structural glass, in particular, fabricated via AWJ cutting. This supports the benefits of topology 
optimization as an alternative method to design lightweight glass structures of various structural forms 
and for a wide range of applications. 
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