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Laminated glass fulfills the demands on safety and security in transparent structural elements used in architecture and 
other fields of engineering. It can be constructed as forced-entry, bullet, or blast resistant. The basic three-layer 
configuration consists of two glass panes connected with a polymer or ionomer interlayer; the advanced products contain 
also other layers. The foil ensures shear coupling and provides post-breakage resistance and damping. For the design of 
laminated glass structures and their analysis, knowledge of mechanical properties of interlayers is essential. In numerical 
simulations, the interlayer is most typically described by the generalized Maxwell chain ‒ a classical viscoelastic model 
which can capture the time/temperature-dependent response of polymers under shear. Its parameters can be found for 
common interlayer types in the literature. However, they differ even for the same material, because of a slightly different 
content of additives, different test setups, and different data processing procedures. In this contribution, the dependence 
of the response of a laminated glass element on the material parameters of the polymer interlayer is studied by means of 
numerical modelling and experiments. Two examples are shown and discussed, i.e., quasi-static analysis of a simply-
supported beam and modal analysis of a free-free beam. Numerical predictions are obtained by a layer-wise model based 
on the finite element method. These predictions are validated against the detailed experimental data. We demonstrate 
that using the Maxwell model parameters from the literature determined even for the same material type but not for the 
concrete foil may lead to unrealistic predictions. 
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1. Introduction 
Laminated glass has great potential as a transparent composite material for load-bearing and fail-safe structural 
elements. In its basic configuration, a three-layer composite consists of two glass layers connected with an interlayer, 
typically made of polymer or ionomer. This basic layout can be repeated or complemented with layers from different 
materials, such as polyurethane, polycarbonate, or others, to improve the post-breakage resistance or to increase the 
impact resistance of the element.  

For numerical prediction of the response of laminated glass, knowledge of the mechanical properties of individual 
layers is essential. The interlayer affects the behavior and response of laminated glass significantly because it provides 
shear coupling, damping, and post-breakage resistance. The mechanical properties which can be found in the literature 
differ in some cases even for the same material. The reason of this discrepancy can be a slightly different content of 
additives, different test setups, and different data processing procedures. 

The aim of this contribution is to study the dependence of the response of laminated glass elements on the material 
parameters of the polymer interlayer which were taken from the literature. These parameters for two selected polymers 
are presented together with the brief introduction of the viscoelastic model for the interlayer in Section 2. For this 
purpose, two different experiments were performed, i.e., quasi-static bending tests in a vacuum chamber and modal 
analysis of unsupported laminated glass beams; both of them are discussed in Section 3. The numerical modelling of 
these examples is briefly introduced in Section 4, and the results of experimental and numerical testing are summarized 
in Section 5. The effects of material properties on the behavior of laminated glass elements is also discussed, and the 
main findings are summarized in Section 6. 

2. Polymer interlayers 
Because of the time/temperature (frequency/temperature) behavior of polymers, their characterization requires several 
parameters to be specified. Constitutive models for these polymer foils can be found in the literature starting from the 
linear elastic approximation for given loading conditions (Foraboschi 2007) or (Foraboschi 2012), through the 
hyperelastic models, e.g., Mooney-Rivlin material (Timmel et al. 2007) or (Larcher et al. 2012), or the classical 
viscoelastic models such as the generalized Maxwell model (Andreozzi et al. 2014) or (Mohagheghian et al. 2017), 
towards fractional derivative models (Renaud et al. 2011). 

In this study, we focused on the generalized Maxwell model which is typically used to capture the viscoelastic 
behavior of polymers. The material parameters of this model can be found for a few of the interlayer foils in the 
literature; see Table 1. 
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The generalized Maxwell model is a set of a spring element and several spring-dashpot Maxwell elements which are 
assembled into a parallel chain model (Christensen 2013). The time dependence of the shear modulus can be 
represented for the time instant 𝑡𝑡 by the Prony series 

𝐺𝐺(𝑡𝑡) = 𝐺𝐺∞ + � 𝐺𝐺𝑝𝑝exp
− 𝑡𝑡
𝜃𝜃𝑝𝑝

𝑃𝑃

𝑝𝑝=1

= 𝐺𝐺0 −� 𝐺𝐺𝑝𝑝 �1 − exp
− 𝑡𝑡
𝜃𝜃𝑝𝑝�

𝑃𝑃

𝑝𝑝=1

, (1) 

with the long-term shear modulus 𝐺𝐺∞ corresponding to the shear modulus of the elastic spring, the moduli 𝐺𝐺𝑝𝑝 denoting 
the shear modulus of the 𝑝𝑝-th unit, 𝑃𝑃 is the number of viscoelastic units, and 𝜃𝜃𝑝𝑝 = 𝜂𝜂𝑝𝑝/𝐺𝐺𝑝𝑝 is the relaxation time related 
to the viscosity 𝜂𝜂𝑝𝑝. The expression can also be rewritten in terms of the instantaneous shear modulus of the chain 
𝐺𝐺0 = 𝐺𝐺∞ + � 𝐺𝐺𝑝𝑝

𝑃𝑃
𝑝𝑝=1 . 

In the frequency domain, the complex-valued dynamic shear modulus is expressed for the angular frequency 𝜔𝜔 as 

𝐺𝐺∗(𝜔𝜔) = 𝐺𝐺′(𝜔𝜔) + i𝐺𝐺′′(𝜔𝜔) = 𝐺𝐺∞ + � 𝐺𝐺𝑝𝑝
𝜃𝜃𝑝𝑝2𝜔𝜔2
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, (2) 

where the real (elastic) part of the modulus 𝐺𝐺′ is called the storage modulus, the imaginary (viscous) component 𝐺𝐺′′ 
is the loss modulus. Temperature sensitiveness of the interlayers is taken into account by a time/temperature 
superposition principle; more specifically by the time shifting using the Williams‒Landel‒Ferry equation (Williams 
et al. 1955). 

In tested samples, two different interlayer materials were used: PolyVinyl Butyral (PVB), Trosifol BG R20, and the 
Ethylene-Vinyl Acetate foil (EVA), Evalam 80-120. The relaxation shear moduli and the storage and loss moduli 
using six different data sets taken from the literature (five for PVB and one for EVA) are plotted in Figure 1. The 
references, where the corresponding parameters for the generalized Maxwell model and for time-temperature shifting 
can be found, are summarized in Table 1. The table provides also commercial names of polymer foils, manufacturers, 
testing methods used for parameter identification, numbers of Prony series terms P, and ranges of relaxation times. 
Additional details on the material testing, such as the frequency and temperature range for dynamic torsion tests and 
dynamic mechanical analysis or the loading scenario and ambient temperatures for the tensile relaxation and creep 
tests, can be found in the references. As can be seen for PVB from Figure 1, the shear moduli plotted for the 
temperature of 25°C differ even for the same type of polymer foil. This can be attributed to different test methods and 
setups or to different content of additives in polymers depending on the manufacturer. Some of the experiments were 
performed on a pure foil, some of them on an interlayer laminated between glass plies, which could also change the 
properties of the polymers. For most of the Prony series listed in Table 1, no clear specification can be found regarding 
the range of time/frequency domain for which the chain can be used. This information is provided only in (Andreozzi 
et al. 2014). For the others, this range of time/frequency domain could be estimated from the smallest and largest 
relaxation times 𝜃𝜃𝑝𝑝. In Figure 1, all the series were plotted for the same time or frequency range to show their behavior 
even beyond the extreme relaxation times. 

 
Fig. 1 Relaxation shear moduli and storage and loss shear moduli in frequency domain for PVB and EVA foils from Table 1 at 25°C. 
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Table 1: List of used material parameters for PVB and EVA foils with references. 

Polymer Subscript Reference Type/Manufacturer Method Prony times (range, numb.) 

PVB A (Andreozzi et al. 2014) Trosifol BG R20, Roberglass Dynamic torsion test 10-1‒107 s (10 terms) 

PVB B (Biolzi et al. 2014) Not known Tens. relax. and creep test 103‒1010 s (8 terms) 

PVB D (Duser et al. 1999) Butacite, DuPont Dyn. mech. analysis 10-11‒107 s (11 terms) 

PVB H (Hooper et al. 2012) Saflex PVB RB-41, Solutia Dyn. mech. analysis 10-5‒103 s (6 terms) 

PVB S (Shitanoki et al. 2014) Butacite, DuPont Dyn. mech. analysis 10-7‒104 s (14 terms) 

EVA E (Eitner 2011) Etimex Vistasolar 496.10 Dyn. mech. analysis & 
Tens. relax. and creep test 

10-1‒1020 s (26 terms) 

3. Experimental testing 
Two experimental measurements were designed and performed: quasi-static analysis of a simply-supported beam and 
modal analysis of a free-free beam. In this section, only the setup for the quasi-static and modal analysis will be 
introduced. The experimental results will be discussed and compared with numerical predictions later in Section 5. 

All samples were made of three-layer laminated glass. The thicknesses of glass layers were 10 mm, of the foil 0.76 mm, 
and the in-plane dimensions were 1,100 mm × 360 mm. The specimens were made of annealed float glass, and the 
PVB or EVA foil was used as the interlayer. 

3.1. Quasi-static bending  
The bending tests in a vacuum chamber were performed on laminated glass samples shown in Figure 1. The 
temperature during the experiment was 25°C. The sample was placed on two linear supports parallel to the shorter 
edges of the pane with soft pads made of rubber, loaded by a prescribed uniform pressure up to its collapse, and the 
response in terms of deflections and strains were measured according to the procedure given by (Melcher and 
Karmazínová 2009). The loading rate was about 0.2‒0.3 kPa/s. The deflections were measured in three points on the 
top surface in compression, and the strain gauges were placed on six points on the top surface in compression and one 
at the center of the sample on the bottom surface in tension. For validation, the largest value of deflection at the center 
was computed from the measured value in the middle of the span from which the average of the measured deflections 
above the line supports was deducted. For the comparison in Section 5, the values measured along the longitudinal 
axis of symmetry were used. The differences in the measured values of strains at the center and near the edges were 
below 4%. 

 
Fig. 2 Experimental setup for bending analysis of laminated glass sample. 

3.2. Modal analysis 
The experimental modal analysis was done to study the behavior of an unsupported laminated glass beam. For that 
reason, the laminated glass sample was suspended by soft strings fixed on a rigid frame as shown in Figure 3. An 
accelerometer was placed in the corner. The measuring device used (Brüel and Kjaer) consisted of an impact hammer 
type 8206, a miniature piezoelectric accelerometer type 4519-003, and a data acquisition unit type 3560-B-120. 
Software platforms Pulse by Brüel and Kjaer and MEscopeVES by Vibrant Technology were used for the signal 
acquisition and processing and for the post-processing of modal parameters.  
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Fig. 3 Experimental setup for modal analysis of laminated glass sample. 

After signal processing, the bending and torsional natural frequencies and corresponding damping ratios were 
extracted from the frequency response functions. The temperature during the experimental measurement was 26°C, 
the frequency step of the measurement was 1 Hz. The quantities corresponding to the first three bending modes are 
compared with our numerical predictions in Section 5. To obtain the same characteristics for damping as from the 
numerical analysis, the damping ratios 𝜉𝜉 from the experimental measurement were converted to the loss factors 𝜂𝜂 as 
follows 

𝜂𝜂 ≈ 2𝜉𝜉. (1) 

Because the modal damping is sensitive to boundary conditions, e.g., (Zemanová et al. 2018), we attempted to assess 
the level of damping potentially provided by the soft hinges. For that reason, the same experiment with the setup 
shown in Figure 3 was performed for a monolithic glass sample with the same geometry. The measured damping 
ratios in this case were less than 1/20 of those for the laminated glass samples. That means that damping caused by 
soft hinges and by glass sheets is much smaller than that provided by the interlayer. If we neglect the effect of supports 
and glass layers in the numerical model, the error in damping ratios (loss factors) due to this assumption should be 
less than 5%. 

4. Numerical analysis 
In the next two sections, the quasi-static solver for bending and the eigenvalue solver for the modal analysis will be 
briefly introduced. For more details, the interested reader is referred to the papers by (Zemanová et al. 2017) and 
(Zemanová et al. 2018). Both of the developed numerical solvers, for quasi-static and modal analysis, are based on 
the finite element method. In the quasi-static case, the structural response is obtained using the unconditionally stable 
exponential algorithm. For the free vibration analysis, the structural eigenfrequencies and modal damping follow from 
the solution of a complex-valued nonlinear eigenvalue problem arising from the viscoelastic nature of the interlayer. 

 
Fig. 4 Degrees of freedom per cross-section of laminated glass using Lagrange multipliers or elimination. 

In both cases, a refined finite element model is used, which enables capturing the shear slip in the interlayer, and 
therefore the piecewise planar cross-sections after the deformation of a laminated glass sample. Every layer is taken 
as a shear deformable beam complemented with membrane effects, see Figure 4. This leads to three unknowns for a 
cross-section of a layer, i.e., two displacements and a rotation. The independent layers are connected back together 
using the compatibility conditions on the interfaces. Two approaches for this linking are schematically illustrated in 
Figure 4.  On the left, the unknowns corresponding to the generalized displacement are complemented with Lagrange 
mutlipliers with the physical meaning of nodal forces ensuring inter-layer compatibility. This treatment increases the 
number of unknowns; on the other hand, the delamination phenomena could be efficiently accounted for. Additionally, 
a domain decomposition method for parallel computing could be employed for larger tasks. This approach was used 
for the quasi-static bending analysis. On the right, the dependent unknowns resulting from the inter-layer compatibility 
are eliminated. This approach reduces the size of the problem and was used for the modal analysis. 
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Linear basis functions combined with the selective integration scheme are used to avoid shear locking. From the 
constitutive point of view, the glass layers are treated as linear elastic, whereas the generalized Maxwell model is used 
to capture the viscoelastic nature of the interlayer. 

4.1. Quasi-static solver for laminated glass beams 
Based on the comparative study in (Zemanová et al. 2017), we employ the formulation combining the assumptions of 
the von Kármán kinematics for large deflections and of the constant Poisson ratio to reproduce the experimental data 
from Section 3.1. 

The quasi-static solver is based on a few basic steps leading to the final linearized system of equations. The first is the 
formulation of the Lagrange function ℒ𝑛𝑛+1 at the time 𝑡𝑡𝑛𝑛+1 in the discretized form 

ℒ𝑛𝑛+1(𝐝𝐝,𝛌𝛌) = 𝛱𝛱𝑛𝑛+1(𝐝𝐝) + 𝛌𝛌T𝐂𝐂𝐝𝐝, (2) 

consisting of two parts corresponding to the total potential energy 𝛱𝛱𝑛𝑛+1 for an arbitrary kinematically admissible 
vector of all generalized nodal displacements 𝐝𝐝  and to the complementary compatibility conditions, where 𝛌𝛌 
represents the vector of admissible Lagrange multipliers and 𝐂𝐂𝐝𝐝 = 𝟎𝟎 is the inter-layer compatibility, recall Figure 4. 
Then, the solution of the optimality conditions 

𝛻𝛻𝐝𝐝ℒ𝑛𝑛+1(𝐝𝐝𝑛𝑛+1,𝛌𝛌𝑛𝑛+1) = 𝛻𝛻𝛱𝛱𝑛𝑛+1(𝐝𝐝𝑛𝑛+1) + 𝐂𝐂T𝛌𝛌𝑛𝑛+1 = 𝟎𝟎, 

𝛻𝛻𝛌𝛌ℒ𝑛𝑛+1(𝐝𝐝𝑛𝑛+1,𝛌𝛌𝑛𝑛+1) = 𝐂𝐂𝐝𝐝𝑛𝑛+1 = 𝟎𝟎. (3) 

provides the searched nodal displacements 𝐝𝐝𝑛𝑛+1 and Lagrange multipliers 𝛌𝛌𝑛𝑛+1 at time 𝑡𝑡𝑛𝑛+1.  

The system is solved iteratively using the Newton method because of the geometric nonlinearity of the problem arising 
from the von Kármán assumptions. Thus, the (𝑘𝑘 + 1)th approximation of 𝐝𝐝𝑛𝑛+1 is expressed as 

𝐝𝐝𝑘𝑘+1
𝑛𝑛+1 = 𝐝𝐝𝑘𝑘 𝑛𝑛+1 + 𝛿𝛿𝐝𝐝 𝑘𝑘+1 for 𝑘𝑘 = 0, 1 …, (4) 

where the previous known iterate 𝐝𝐝𝑘𝑘 𝑛𝑛+1 is complemented with the increment 𝛿𝛿𝐝𝐝 𝑘𝑘+1 determined from the linearized 
system 

� 𝐊𝐊𝑘𝑘 𝐂𝐂𝑇𝑇
𝐂𝐂 𝟎𝟎

� �
𝛿𝛿𝐝𝐝𝑘𝑘+1

𝛌𝛌𝑘𝑘+1 � = − � 𝐟𝐟𝑖𝑖𝑛𝑛𝑖𝑖𝑘𝑘 − 𝐟𝐟𝑒𝑒𝑒𝑒𝑖𝑖(𝑡𝑡𝑛𝑛+1)
𝟎𝟎

� (5) 

with the stiffness matrix 𝐊𝐊𝑘𝑘 , the matrix corresponding to the compatibility conditions 𝐂𝐂, and the vectors of the internal 
and external forces 𝐟𝐟𝑖𝑖𝑛𝑛𝑖𝑖𝑘𝑘  and 𝐟𝐟𝑒𝑒𝑒𝑒𝑖𝑖(𝑡𝑡𝑛𝑛+1); see page 385 in (Zemanová et al. 2017). 

The initial values 𝐝𝐝0 0 are set to zeros. The stopping criterion is defined as 

� 𝐟𝐟𝑘𝑘 𝑖𝑖𝑖𝑖𝑡𝑡−𝐟𝐟𝑒𝑒𝑒𝑒𝑡𝑡+𝐂𝐂T 𝛌𝛌𝑘𝑘 �
2

max(‖𝐟𝐟𝑒𝑒𝑒𝑒𝑡𝑡‖2,1)
< 𝜖𝜖tol (6) 

with the user-defined tolerance 𝜖𝜖tol. 

4.2. Complex-valued eigensolver 
Unlike in the quasi-static analysis, the real-valued shear modulus is replaced by a complex-valued dynamic shear 
modulus for the interlayer, and a geometrically linear formulation together with the elimination of unknowns, Figure 4, 
was used for the modal analysis of the task from Section 3.2. The complex-valued eigensolver is introduced in 
(Zemanová et al. 2018) and the main points of the derivation are summarized in this section. 

In the modal analysis, a classical eigenvalue problem is formulated and complemented with a normalizing condition 
as follows 

(𝑲𝑲(𝜔𝜔) −𝜔𝜔2𝑴𝑴)𝑼𝑼 = 𝟎𝟎, 

𝑼𝑼0
T(𝑼𝑼− 𝑼𝑼0) = 0, (7) 
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where the mass matrix 𝑴𝑴 is real-valued and constant, the stiffness matrix 𝑲𝑲 is complex-valued and frequency-
dependent because of the dynamic shear modulus of the interlayer, and therefore the angular natural frequency 𝜔𝜔 and 
the corresponding mode shape 𝑼𝑼 are also complex-valued. The vector 𝑼𝑼0 corresponds to an eigenvector solving the 
real-valued part of the problem (7) with an initial value of shear modulus of the interlayer. 

The problem from (7) is solved again iteratively using the Newton method and the linearized form of the angular 
natural frequency 𝜔𝜔 and the mode shape 𝑼𝑼 

𝜔𝜔𝑘𝑘+1 = 𝜔𝜔𝑘𝑘 + 𝛿𝛿𝜔𝜔,  

𝑼𝑼𝑘𝑘+1 = 𝑼𝑼𝑘𝑘 + 𝛿𝛿𝑼𝑼, for 𝑘𝑘 = 0, 1 …, (8) 

compare with (4), where the (𝑘𝑘 + 1)th approximation is determined from the previous one and the increment arising 
from the linearized system of equations 

�
𝑲𝑲� 𝜔𝜔𝑘𝑘 � − 𝜔𝜔2𝑘𝑘 𝑴𝑴 �𝜕𝜕𝑲𝑲

𝜕𝜕𝜔𝜔
� 𝜔𝜔𝑘𝑘 � − 2 𝜔𝜔𝑘𝑘 𝑴𝑴� 𝑼𝑼𝑘𝑘

𝑼𝑼0
T 0

� � 𝑼𝑼𝑘𝑘+1

𝛿𝛿𝜔𝜔
� = �

𝟎𝟎
𝑼𝑼0
T𝑼𝑼0

�. (9) 

This system is solved independently for each eigenpair, i.e., the angular natural frequency and the corresponding mode 
shape. 

The initial values are set to 𝑼𝑼 = 𝑼𝑼0
0  and 𝜔𝜔 = 𝜔𝜔0

0  derived from the real-valued part of the problem (7). The 
iterative solver is stopped when the residual drops below a given tolerance limit 

��𝑲𝑲� 𝜔𝜔𝑘𝑘 �− 𝜔𝜔2𝑘𝑘
𝑴𝑴� 𝑼𝑼𝑘𝑘 �

2

� 𝑼𝑼𝑘𝑘 �
2

< 𝜖𝜖tol. (10) 

The real-valued natural frequencies 𝑓𝑓Hz and the modal factors 𝜂𝜂 are extracted from the real and imaginary part of the 
complex-valued natural frequencies according to the following relationship 

𝜔𝜔2 = (2𝜋𝜋𝑓𝑓Hz)2(1 + i𝜂𝜂). (11) 

5. Validation and discussion of results 
The predictions of the measured quantities using the developed finite element solvers were validated against the 
experimental data. The tolerance  𝜖𝜖tol was set to 10-5, and each layer of the laminated glass was discretized by 300 
elements. Based on the experiences from our previous studies in (Zemanová et al. 2017) and (Zemanová et al. 2018), 
the discretization errors should be safely below 1% for all quantities presented later. 

The material parameters of the generalized Maxwell model were taken from (Andreozzi et al. 2014), (Biolzi et al. 
2014), (Duser et al. 1999), (Hooper et al. 2012), (Shitanoki et al. 2014), and (Eitner 2011). The Poisson ratio of 
interlayers was set to 0.49 and the density of PVB to 1,100 kg/m3 and EVA to 950 kg/m3. For glass, the density was 
assumed 2,500 kg/m3, the Poisson ratio was set to 0.22, and the Young modulus of the value 76.6 GPa was measured 
by indentation technique. The same values were used for the quasi-static and modal analyses. 

5.1. Deflections and strains from quasi-static analysis 
For the quasi-static analysis of laminated glass samples from Section 3.1, the loading scenarios for both interlayers 
are shown in Figure 5 together with the measured and predicted response of the sample in terms of the deflection and 
the largest value of the tensile strain at the center of the specimen. The loading rate was about 0.3 kPa/s for the PVB 
sample and 0.2 kPa/s for the EVA sample. The collapse occurred at the loading time 82 s and pressure 17 kPa for the 
PVB sample and 134 s and 29 kPa for the EVA sample. 

For PVB interlayers, the best agreement of the numerical prediction with the measured response can be seen from 
Figure 5 for material parameters from (Duser et al. 1999). On the other hand, the values of deflections and stains are 
significantly overestimated for the parameters from (Hooper et al. 2012). An excellent agreement was found between 
the experimental data for the EVA sample and its numerical prediction using the data from (Eitner 2011). 

 
Table 2: Quasi-static analysis: Comparison of experimental data and numerical predictions corresponding to the largest loading pressure. 
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Data Deflection at C 
[mm] 

Error  
[%] 

Comp. strain at 
C  
[mm/m] 

Error  
[%] 

Tens. strain at C  
[mm/m] 

Error  
[%] 

Comp. strain at 
Q 
[mm/m] 

Error  
[%] 

EXP PVB 9.84 ‒ -0.60 ‒ 0.59 ‒ -0.44 ‒ 

FEM PVBA 12.09 +22.89 -0.65 +8.32 0.65 +10.63 -0.49 +11.62 

FEM PVBB 11.22 +14.08 -0.62 +3.95 0.62 +6.16 -0.47 +7.22 

FEM PVBD 9.66 -1.80 -0.57 -3.94 0.57 -1.89 -0.43 -0.73 

FEM PVBH 13.51 +37.31 -0.69 +15.48 0.69 +17.94 -0.52 +18.83 

FEM PVBS 9.33 -5.21 -0.56 -5.63 0.56 -3.62 -0.43 -2.43 

EXP EVA 12.44 ‒ -0.88 ‒ 0.87 ‒ -0.66 ‒ 

FEM EVAE 12.43 -0.12 -0.86 -1.50 0.86 -0.53 -0.65 -0.66 

 

Table 2 summarizes the measured and predicted values and their errors for the largest loading pressure (before the 
collapse). Three sets of parameters, (Duser et al. 1999), (Shitanoki et al. 2014), and (Eitner 2011), provide the 
numerical prediction of the corresponding measured quantities with errors less than about 5%. The other three 
overestimated the response of laminated glass samples. The errors increased up to 37% for the data in (Hooper et al. 
2012). The remaining two series in (Andreozzi et al. 2014) and (Biolzi et al. 2014) are more suitable for predictions 
of the long-term response; recall Figure 1. 

 
Fig. 5 Evolution of loading pressure, maximum deflection, and the largest value of tensile strain at the center for PVB and EVA samples. 

0 50 100

time [s]

0

5

10

15

20

pr
es

su
re

 [k
Pa

]

PVB

loading rate

 0.3 kPa/s

EXP

PVB
A

PVB
B

PVB
D

PVB
H

PVB
S

limits

0 20 40 60 80 100

time [s]

0

2

4

6

8

10

12

de
fle

ct
io

n 
[m

m
]

0 20 40 60 80 100

time [s]

0

0.2

0.4

0.6

0.8

te
ns

ile
 st

ra
in

 [m
m

/m
]

0 50 100 150

time [s]

0

5

10

15

20

25

30

pr
es

su
re

 [k
Pa

]

EVA

loading rate

 0.2 kPa/s EXP

EVA
E

limits

0 50 100 150

time [s]

0

5

10

15

de
fle

ct
io

n 
[m

m
]

0 50 100 150

time [s]

0

0.2

0.4

0.6

0.8

1

te
ns

ile
 st

ra
in

 [m
m

/m
]



 Challenging Glass 6 6

5.2. Natural frequencies and modal loss factors from free vibration analysis 
The experimental setup for modal analysis of laminated glass samples was introduced in Section 3.2. The numerical 
predictions, in terms of natural frequencies and loss factors, are shown in Table 3 and 4. The results were obtained by 
the complex-valued eigensolver from Section 4.2 and the material data for interlayers referenced in Table 1. 

Table 3: Modal analysis: Comparison of experimental data and numerical predictions of natural frequencies for the first three mode shapes (MS). 

Data Natural frequency 1. 
MS 
[Hz] 

Error  
[%] 

Natural frequency 2. 
MS 
[Hz] 

Error  
[%] 

Natural frequency 3. 
MS 
[Hz] 

Error  
[%] 

EXP PVB 92.48 ‒ 248.02 ‒ 470.50 ‒ 

FEM PVBA 70.92 -23.32 155.52 -37.30 281.26 -40.22 

FEM PVBB 63.42 -31.42 144.29 -41.82 268.46 -42.94 

FEM PVBD 96.90 +4.77 258.15 +4.08 491.43 +4.45 

FEM PVBH 95.28 +3.02 252.95 +1.99 477.48 +1.48 

FEM PVBS 97.24 +5.14 260.68 +5.11 493.95 +4.98 

EXP EVA 81.08 ‒ 183.76 ‒ 320.31 ‒ 

FEM EVAE 86.24 +6.37 196.15 +6.74 338.88 +5.80 

 

The numerical prediction using series from (Duser et al. 1999), (Hooper et al. 2012), or (Shitanoki et al. 2014) provide 
the first three natural frequencies with the errors less than 5%; for the series from (Eitner 2011) below 7%. The other 
two series were adjusted for a lower frequency range, (Andreozzi et al. 2014), or for a long-term response, (Biolzi et 
al. 2014), and therefore the natural frequencies are underestimated by 20‒45%. 

Table 4: Modal analysis: Comparison of experimental data and numerical predictions of loss factors for the first three mode shapes (MS). 

Data Loss factor 1. MS 
[%] 

Error  
[%] 

Loss factor 2. MS 
[%] 

Error  
[%] 

Loss factor 3. MS 
[%] 

Error  
[%] 

EXP PVB 2.54 ‒ 5.29 ‒ 7.32 ‒ 

FEM PVBA 0.08 -96.98 0.03 -99.47 0.01 -99.86 

FEM PVBB 0.00 -100.00 0.00 -100.00 0.00 -100.00 

FEM PVBD 1.01 -60.34 4.13 -22.06 7.72 +5.50 

FEM PVBH 4.93 +94.19 10.89 +105.60 12.21 +66.94 

FEM PVBS 0.95 -62.41 2.38 -55.12 3.74 -48.88 

EXP EVA 2.57 ‒ 4.50 ‒ 4.44 ‒ 

FEM EVAE 1.42 -44.71 2.48 -44.99 2.32 -47.77 

 

Table 4 shows that all methods provide only an informative estimate of damping. The best agreement was found for 
the PVB sample with the parameters from (Duser et al. 1999). The error in loss factors are 60%, 22%, and 6% for the 
first, second, and third mode shape respectively. This discrepancy can be caused by the oscillatory character of the 
shear moduli plotted against the angular frequency; recall Figure 1. Increasing the number of viscoelastic units in the 
chain could improve the agreement with the experimental data. 

  



Effect of Interlayer Mechanical Properties on Quasi-Static and Free Vibration Response of Laminated Glass 

6. Conclusions 
The aim of this study was to assess the effect of mechanical properties of interlayers on the response of laminated 
glass elements. Six sets of parameters corresponding to the generalized Maxwell model (five for PolyVinyl Butyral 
and one for Ethylene-Vinyl Acetate) were selected from the literature, and their ability to accurately describe the 
behavior of tested laminated glass samples was examined for two examples.  

For both the quasi-static and modal analysis, we compared the predictions of the numerical models using the different 
data from the literature with the experimental data. The results of this study are summarized in Figure 6. Each plot 
shows the errors of the numerical predictions of the tested quantities against the corresponding experimentally 
measured values. It can be seen that: 

• The level of modal damping is highly sensitive to the material properties of the interlayer, and therefore, the 
errors in the modal loss factors are high for all used series. In most cases, the values of the loss factors are 
underestimated.    

• Surprisingly, the best agreement with the experiment for the tested sample with the PolyVinyl Buthyral 
Trosifol BG R20 was found for the numerical prediction using the data for Butacite (Duser et al. 1999). The 
errors in the quasi-static response predictions and also in the natural frequencies were below 5%. However, 
the errors in loss factors increased up to 60%.    

• The parameters for EthylenVinyl Acetate Etimex Vistasolar 496.10 (Eitner 2011) can be used to predict the 
quasi-static response of the tested sample with EthylenVinyl Acetate Evalam. In modal analysis, the natural 
frequencies were predicted with the errors below 7% and the loss factors below 50%. 

• Nevertheless, one has to be careful dealing with data from the literature even for the same type of the 
interlayer foil. 

 
Fig. 6 Summary of errors for all tested quantities and all interlayers. (D-C deflection at the center, C-C compressive strain at the center, T-C 
tensile strain at the center, C-Q compressive strain at the quarter, F-1,2,3 natural frequency for the first, second, or third mode shape, L-1,2,3 

loss factor for the first, second, or third mode shape). 

For the reliable design of laminated glass structures and their analysis, the knowledge of mechanical properties of 
interlayers is essential. These conclusions demonstrate that the numerical models using the Maxwell chains parameters 
from the literature (for the same type of material) can provide unrealistic results. Reasons for the errors can be the 
difference in the content of additives depending on the manufacturer, or that the parameters of the generalized Maxwell 
model are used outside of the specific range of time/frequency domains, for which the chain was calibrated. This 
suggests the need for running, at least for a specific manufacturer, an independent experimental program and model 
calibration procedure to arrive at accurate and reliable predictions particularly in cases, where the viscoelastic 
properties of the polymer interlayer are decisive (Janda et al. 2016) or (Schmidt et al. 2017). 
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