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SentryGlas® (SG) (a transparent ionomer from Kuraray) and Transparent Structural Silicon Adhesive (TSSA) (a 
transparent silicon from Dow Corning) are two of the adhesive materials used in laminated adhesive connections for 
structural glass applications. Although they have been used in several projects worldwide, failure criteria for these 
materials are currently not available in literature. This work gives an introduction to the theoretical development of a 
novel failure a criterion for TSSA and SG under varying stress state conditions. The main output of this work is a four-
dimensional Generalized Triaxial Model (GTM) that accounts for a generic stress state by a governing equation 
expressed as a function of the three-dimensional stress tensor. Both deviatoric and hydrostatic energetic components 
are taken into consideration by means of a non-linear function of the two contributions. The effects of the model 
parameters are investigated by a parametrical study. The proposed model is then analytically compared to existing 
failure criteria. It is shown that many of the existing models available in the literature can be seen as particular cases of 
the proposed model. Although the GTM was theoretically developed specifically for SG and TSSA, the model can be 
generically used as failure criterion for many isotropic materials.  
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1. Introduction 
The SentryGlas® (SG) (a transparent ionomer from Kuraray) and the Transparent Structural Silicon Adhesive 
(TSSA) (a transparent silicon from Dow Corning) are two of the transparent adhesive materials used in laminated 
adhesive connections for structural glass applications. Although they have been used in several projects worldwide 
(Sitte et al. 2011; O’Callaghan 2012; Lenk & Lancaster 2013; Peters et al. 2007; Puller et al. 2011; Santarsiero et al. 
2013; Carvalho et al. 2011; Ludwig 2015), failure criteria for these materials are currently not available in literature. 
This work gives an introduction to the theoretical development of a novel multi-dimensional model that accounts for 
any generic stress state. This is done by developing a Generalized Triaxial Model (GTM) defined over the three-
dimensional stress space and that accounts for the non-linear effects of strain rate and temperature variation. The 
theoretical bases and main equations that are necessary for a concise analytical description of failure criteria are 
given. Stress state equations in the Haigh-Westergaard space are derived in orthogonal and cylindrical coordinates. 
The GTM is developed as a function of the three-dimensional stress space, strain rate and temperature. A 
parametrical study is then performed to investigate the effects of the model parameters. The proposed model is then 
compared to existing models and the main theoretical hypotheses are highlighted.  
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2. Theoretical framework 
The analytical bases necessary for the definition and the mechanical interpretation of failure criteria are given in this 
section. In particular, three different stress-space coordinate systems are derived. Basic concepts of solid mechanics 
are assumed to be as known for the sake of brevity. 

  

Fig. 1 Scheme of the total stress vector at point P of a solid body under generic boundary conditions, body forces, and surface forces 

Let us consider a continuous solid body B, in equilibrium, subjected to boundary conditions , body forces fb, and 
surface forces f (Fig. 1). The body is then divided in two parts, B1 and B2, by a cutting plane , containing point P 
and with normal n. Surfaces S1 and S2 are so created. In a x-y-z reference system, the plane  is fully determined by 
the point P and the normal n, with the latter not being necessarily parallel to one of the axes. Now, to guarantee the 
equilibrium of each body part, force fields are acting onto the surfaces S1 and S2. Before the cutting, these forces 
were applied by B1 to B2 and vice-versa. Considering an infinitesimal part of the surface S, of area dA, centred on the 
point P, the total stress1 vector tn is defined by equation (1) (Gere & Timoshenko 1997). In (1), dR is the vector sum 
of the forces acting on the surface dA. The same procedure can be repeated for any generic plane i containing the 
point P. Having the full knowledge of the stress state at point P means to know magnitude and direction of the 
vector tn for any plane i containing the point P. 

	 ௡ݐ ൌ ݈݅݉
ௗ஺→଴

ܴ݀
ܣ݀
	 (1) 

The stress state at point P is fully described by knowing a three-dimensional stress tensor describing three total 
stress vector derived from an orthogonal reference system. There is at least one orthogonal reference system with 
zero shear forces along the planes with normals n1, n2 and n3. Consequently, the stress state is fully described by 
three scalar quantities, 1, 2 and 3, i.e. principal stresses at point P (equation (2)). Alternatively, the stress state is 
also fully determined if the stress invariants are given (equations (3) or (4)) (Timoshenko 1930a). 

	 ௜௝ߪ ൌ ,ଵߪሺܨ ,ଶߪ 			ଷሻߪ (2) 

                                                           

1 It is considered a solid body that also satisfy the condition of having the momentum of R with respect to P equal to zero, i.e. B is non-polar 
solid. 
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Now, let us consider a three-dimensional space, known as Haigh-Westergaard stress space, with a principal 
reference system n1, n2 and n3 centred at point P (see Fig. 2). The stress state is described by the position of the point 
Ps, which is expressed in orthogonal coordinates 1, 2 and 3. Notice that the vector PPs does not necessarily 
represent the total stress vector at P but rather the graphical representation of the three-dimensional stress state at P 
in the stress H-W space. With the purpose of describing the derivation and main characteristics of failure criteria, it 
is now useful to express the stress state PPs in cylindrical coordinates. To do so, the hydrostatic axis and the 
deviatoric planes are defined using the definitions of deviatoric and hydrostatic components of the stress tensor. 
Namely, the hydrostatic axis, , is defined as the direction of the vector sum of n1, n2 and n3. The deviatoric plane is 
instead defined as the plane orthogonal to  (see Fig. 2 (a)). 

 

Fig. 2 Representation of stress state at P in the three-dimensional Haigh-Westergaard stress space,  
in an orthogonal (x,y,z) and a cylindrical () reference system 
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ቍ (5) 

Now, using the cylindrical coordinate system, the stress state is know when are given the coordinate along the 
hydrostatic axis , the distance from the hydrostatic axis , and the angle of its projection , over the deviatoric 
plane with any of the principal axis projection over the deviatoric plane (see Fig. 2 (b)). In Fig. 2 (b), n1’, n2’ and n3’ 
represent the projections of the principal axes over the deviatoric plane. The definition of , also called Lode’s angle 
(Lode 1926), is given by equation (5). It should be noticed that the coordinate is not equal to the hydrostatic stress 
(h). In that respect, it is then convenient to define a second cylindrical reference system. Same definitions of 
hydrostatic axis and deviatoric plane apply, while the hydrostatic stress h is now used instead of and the 
equivalent stress (here indicated as q) is used instead of . The three-dimensional stress state at point P can be now 
expressed in the form of equations (6) and (7).  

	 തߪ ൌ ,ߦሺܨ ,ߩ 			ሻߙ (6) 

	 തߪ ൌ ,௛ߪሺܨ ,ݍ 			ሻߙ (7) 

Considering now the three-dimensional stress space of Fig. 2, a material failure criterion is generally defined as the 
analytical envelope of all admissible stress state of the body B at point P. A failure criterion therefore represents the 
three-dimensional analytical surface 2  containing all possible configurations of vector PPs. Making use of the 
previous considerations on the stress state tensor, a failure criterion is therefore generally expressed by equation (8). 
In (8), g represents the governing equation of the failure criterion, which is a function of the stress tensor elements 
or, equivalently, of the principal stresses. 

                                                           

2 Analytical constrains usually apply to the governing equation of failure criteria (see following section). 
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݃൫ߪ௜௝൯ ൌ 0			

	݃ሺߪଵ, ,ଶߪ ଷሻߪ ൌ 0		

(8) 

Accounting for the stress tensor properties and the orthogonal-cylindrical transformation described in this section, 
any failure criterion can be analytically rearranged in terms of stress invariants or in terms of cylindrical coordinates 
(equation (9)). This will allow, in the following section, to define the governing equation of failure criteria in a 
concise form. 

	
݃ሺܫଵ, ,ଶܬ ሻ	ଷܬ ൌ 0	

݃ሺߪ௛, ,ݍ ሻߙ ൌ 0		

(9) 

In case of isotropic material, failure criteria are symmetric with respect to n1’, n2’ and n3’(Timoshenko 1930b). A 
three-dimensional failure criterion is therefore fully defined when the equation of the surface meridian3 is given over 
a Lode’s angle span of 60°. In some cases, failure criteria are also independent from the angle , i.e. characterized 
by axial-symmetry with respect to the hydrostatic axis. In these cases, only one meridian equation is sufficient to 
fully define the failure criterion. It follows that, for Lode-independent failure criteria (i.e. J3-independent), the use of 
a cylindrical coordinate system allows to synthetize the three-dimensional criterion definition by means of a two-
dimensional equation (see Fig. 2 and equation (9)), unless other dimensions are involved (e.g. temperature and strain 
rate).  

3. Generalized triaxial model 

3.1. Basic concept 
The governing equation of model should be defined as a function both the distortion energy and the hydrostatic 
energy density. More specifically, based on the experimental observation of (Santarsiero 2015), the model aims to 
account for a generic non-linear combination of the two deviatoric and hydrostatic contributions. Secondly, the 
model should not be limited to a specific stress state condition but instead apply to generic configuration of the 
three-dimensional stress tensor. It follows that it should not apply only to a specific value of triaxiality (ration 
between hydrostatic and equivalent stress) but instead apply to a varying value of the hydrostatic angle. Thirdly, the 
model aims to quantify the effects of strain rate and temperature variation. More specifically, based on the results of 
(Santarsiero 2015), non-linear analytical expressions should be implemented as a function of the strain rate and 
temperature values. 

	 ݃ ൌ ,௫௫ߪሺܨ ,௬௬ߪ ,௭௭ߪ ߬௭௬, ߬௫௭, ߬௫௬, ܶ, ,ሶߝ 	ሻ݌ (10) 

	 ݃ ൌ ,ଵߪሺܨ ,ଶߪ ,ଷߪ ܶ, ሶ,ߝ ሻ݌ ൑ 0	 (11) 

In order to fulfill these conditions, the model assumes the form of equation (10), or equivalently, equation (11). It 
follows that a 5-dimensional model should be defined, as a non-linear function of the principal stress, temperature, 
strain rate and p. In equation (11), p is a vector containing a set of material parameters. In this work, as done in von 
Mises and Drucker-Prager models, an axial-symmetric model is developed, i.e. independent of the third stress 
invariant. The dimensions of the model therefore reduces from 5 to 4. Subsequently, the general expression of the 
model assumes the form of equation (12) if expressed in term of stress invariants, or (13) if expressed in term of q 
and h.  

	 ݃ ൌ ,ଵܫሺܨ ,ଶܬ ܶ, ,ሶߝ ሻ݌ ൑ 0 (12) 

	 ݃ ൌ ,௛ߪሺܨ ,ݍ ܶ, ,ሶߝ ሻ݌ ൑ 0 (13) 

                                                           

3 Intersection of the failure criteria with a generic plane containing the hydrostatic axis 
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In the following section the analytical definition of the model is given in term of q and h because this allows to 
provide a mechanical interpretation to the material parameters. Nevertheless, the model can be reformulated in terms 
of stress invariants or principal stresses  

3.2. Analytical definition of the model and parameters effects 
The governing equation of the generalized triaxial model (GTM) proposed in this work is given by equation (14). In 
equation (14), q is the equivalent stress, h is the hydrostatic stress, q and h are material parameters, and a and b 
are non-linear functions of the temperature, strain-rate and the material under consideration. The GTM is therefore 
analytically defined as a function of the stress tensor element, the strain rate and the temperature. Equation (14) also 
shows that the model is not restricted to a specific value of triaxiality but instead it applies to a varying value of 
hydrostatic angle, therefore to any generic three-dimensional stress state (i.e. any load condition and geometry).  

	
݃ ൌ ఉ೜ݍ ൅ ௛ߪ	ܽ

ఉ೓ െ ܾ ൑ 0

,ሺܶܽ	݄ݐ݅ݓ ,ܾሺܶ	ܽ݊݀	ሶሻߝ ሶሻߝ

(14) 

In a three-dimensional stress space, the proposed model represents a revolution surface characterized by an axial 
symmetry4 with respect to the hydrostatic axis (Fig. 3 (a)). The revolution surfaces closes at increasing values of 
hydrostatic stresses with a vertex at coordinate =(30.5b/a)^(1/h)). The intersection of the GTM with a plane of zero 
principal stress (e.g. 2=0) gives an ellipse. The intersection with a deviatoric plan, at a given temperature and strain 
rate, is a circle with variable radius, function of the hydrostatic coordinate. At increasing temperature and decreasing 
strain rate, the radius of the iso-hydrostatic circles decreases (see Fig. 3 (b)). In Fig. 3 the model is plotted in the 
three dimensional stress space, at constant strain rate and temperature. 

(a) (b) 

 

Fig. 3 (a) Proposed generalized triaxial model over the three-dimensional Haigh-Westergaard stress space  
(b) Iso-hydrostatic sections on the deviatoric plane at varying temperature and strain rate values 

Equation (14) shows that the proposed model is defined as a non-linear function of the two components of the stress 
tensor. The deviatoric and hydrostatic components are implemented respectively by means of q and h. More 
specifically, according to equation (14), the deviatoric energy decreases when the hydrostatic stress increases and 
the hydrostatic energy decreases when the equivalent stress increases. The non-linear interaction of the two stress 
components is regulated by the parameters q and h. 

                                                           

4Because of this symmetry, only two of the three stress dimensions are independent. Although it applies to a generic three-dimensional stress 
tensor, the total number of dimensions of the proposed model goes from five to four. 



 Challenging Glass 5 

 

(a) (b) 

  

Fig. 4 Effects of h (a) and q (b) parameters on the meridian curve of the proposed model 

The shape of the curve is directly affected by the values of these two parameters q and h. More specifically, (i) h 
affects the tangent of the curve at deviatoric stress equal to zero, which at increasing h rotates clockwise up to 
vertical position (indicated by vertical dotted line) and (ii) q affects the tangent of the curve at hydrostatic stress 
equal to zero, which at increasing q rotates counter clockwise up to horizontal position (indicated by horizontal 
dotted line). It is also observed that existing models are particular cases of the proposed model (indicated with 
arrows in Fig. 4 (b)), as discussed more in detail in the following section. 
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(15) 

	 ,଴ሺܶݍ ሶߛ ሻ ൌ ௩ݍ ∙ ௩,்ߙ ∙ ఊ,௩ߙ (16) 

	 ,௛,଴ሺܶߪ ሶሻߝ ൌ ௛,௡ߪ ∙ ௡,்ߙ ∙ 	ఌ,௡ߙ (17) 

The GTM is now analytically rearranged from equation (14) to equation (15). The governing equation can be seen 
as the sum of two terms: the deviatoric term (first term) and the hydrostatic term (second term). In the derivation of 
equation (15), the functions a and b are converted in the function q0 and h.0. The mathematical relationships 
between these functions are given by equation (18).  

	 ܾ ൌ ଴ݍ
ఉ೜			; 			ܽ ൌ 	

଴ݍ
ఉ೜

௛,଴ߪ
ఉ೓
ൌ

ܾ

௛,଴ߪ
ఉ೓
		 (18) 

If compared to equation (14), the governing equation of the model rearranged in equation (15) allows to provide a 
mechanical interpretation to the material parameters. More specifically (i) the parameter q0 is related to the 
maximum value of distortion energy density at an hydrostatic angle equal to 90°, i.e. stress state condition with 
hydrostatic component of the stress tensor equal to zero and (ii) the parameter h.0 is related to the maximum value 
of hydrostatic energy density at hydrostatic angle equal to 0, i.e. stress state condition with deviatoric component of 
the stress tensor equal to 0. 
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Fig. 5 Effects of q0 and h.0 parameters on the meridian curve of the proposed model 

The model parameter q0 and h.0 are computed respectively by means of equations (16) and (17). These equations 
describe the effects of temperature and strain rate variation to the failure surface (see Fig. 5). The meridian of the 
model tends to converge towards the origin when q0 and h.0 reduces i.e. at increasing temperature and decreasing 
strain rate. Both parameters are defined as the product of a reference value, qv and h,n, with analytical temperature 
and strain rate function. The analytical temperature and strain rate functions of equations (16) are derived using a 
probabilistic approach developing a non-linear multi-dimensional algorithm. The developed probabilistic algorithm 
is developed such as allows the derivation of (i) a model defined over multiple dimensions (in this case the four 
dimensions mentioned above) (ii) a model with a variable standard deviation and (iii) a model dependent on one or 
more parameters. More detailed information on the analytical expressions of these functions can be found in 
(Santarsiero 2015).  

3.3. Analytical comparisons with existing models 
Equation (14) is now compared with existing models. It is observed that some existing failure criteria can be seen as 
particular cases of the proposed model with specific values of the model parameters. A first case, for example, is to 
assume q =1 and a that tends to zero. With this particular choice of parameters, the model converges to the von 
Mises criteria. Then, with the same parameters, at Lode’s angle equal to 0° and 60°, Tresca is also a particular case 
of the proposed model (assuming h.0 that tends to infinity). A second case is to assume q =1 and h =1. This 
particular case of the model converges to the Drucker-Prager criterion. At Lode’s angle equal to 0 and 60°, the 
Coulomb-Mohr criterion is also a particular case of the proposed model. In the case of q =2 and h =1 it can be 
observed that the Raghava (Raghava & Caddell 1973) and Balandin (Balandin 1937) models are equivalent to this 
particular case of the proposed model. Finally, with q =1 and h =2 the proposed failure criterion converges to the 
model given by Gibson in (Gibson et al. 1989) and with q =2 and h =2 the proposed failure criterion converges to 
the model given by Deshpande in (Deshpande & Fleck 2001). 

3.4. Hypothesis and analytical limitations of the proposed model 
The analytical limitations of the proposed model are listed below: 

 The main hypothesis assumed in the analytical definition of the GTM is to be independent of the third 
deviatoric stress invariant, similar to what is done in von Mises and Drucker-Prager model. However, this 
hypothesis could be overcome by running the algorithm of the model introducing an analytical term 
involving the Lode’s angle. 

 Given the Drucker’s stability postulates and the subsequent convexity condition, the following 
mathematical limitations apply to the model parameters: 

	 ௛ߚ ൐ ௤ߚ			;			1 ൐ 1	 (19) 

 The proposed model is here used to analyse stress state with positive value of the hydrostatic component of 
the stress tensor. In case of negative hydrostatic stress, the following mathematical limitation applies: 

	 ௛ߚ ∈ 	Ժ	 (20) 
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 In equation (14), the exponents q and h are described by scalar values. It follows that these parameters are 
strain rate and temperature independent. Further work could be performed modifying equation (14), 
introducing strain rate and temperature terms in the exponents. 

 Hydrostatic-deviatoric multiplicative terms (such as qh) are not taken into consideration by the proposed 
model. 

4. Conclusion 
This work gives an introduction to the theoretical development of a novel failure a criterion for TSSA and SG 
connections under varying stress state conditions. The main output of this work is a four-dimensional Generalized 
Triaxial Model (GTM) that accounts for a generic stress state by a governing equation expressed as a function of the 
three-dimensional stress tensor. Both deviatoric and hydrostatic energetic components are taken into consideration 
by means of a non-linear function of the two contributions. The proposed model is defined over four independent 
dimensions: the equivalent stress, the hydrostatic stress, the strain rate and the temperature. In a three-dimensional 
stress space, the governing equation of the GTM is represented by a revolution surface, axial-symmetric with respect 
to the hydrostatic axis. The effects of the model parameters are investigated by a parametrical study. It is shown that 
the exponents of the governing equation affect the orientation of the surface tangent to the hydrostatic axis and to 
the deviatoric plane. It is also shown that the meridian of the surface tends to the origin of the three-dimensional 
stress space for decreasing strain rate and increasing temperature. The proposed model is then analytically compared 
to existing failure criteria. It is shown that some of the existing models available in the literature are particular cases 
of the proposed model. Although the GTM was theoretically developed specifically for SG and TSSA, the model 
can be generically used as failure criterion for many isotropic materials. 
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