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Laminated glass, composed by glass plies sandwiching polymeric interlayers, can provide a safe post-glass breakage 
response, in compliance with the fail-safe approach used in the structural design. In fact, when glass breaks, shards 
remain attached to the polymer, preventing danger from falling materials and imparting a "tension stiffening" effect to 
the interlayer, so that the broken panel maintains a certain residual load-bearing capacity. Here, a homogenized approach 
is presented to describe the mechanical properties of broken heat-treated laminated glass under tensile stresses. The 
model accounts for the stress diffusion from the delaminated zones, where shards are bridged by the interlayer-ligament 
only, to the regions where glass is bonded to the interlayer. The model provides a simple but accurate estimate of the 
effective tensile properties of the cracked laminate. Here, the influence of the interlayer thickness, the size of the glass 
shards and the glass-polymer delamination on the post-critical response is accurately investigated, and analytical results 
are compared with numerical ones. The obtained expression for the tensile modulus is used to predict, in more general 
terms, the response of cracked laminated glass under in-plane and out-of-plane bending. In both cases, a key point is the 
correct evaluation of the tension stiffening in the polymeric interlayer due to the adhesion with the glass shards.  
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1. Introduction 

In the structural design of glass, it is mandatory to use the fail-safe approach, typical in aircraft design, according to 
which the failure of one or more components in extreme situations shall not compromise the overall stability. In 
particular, it is necessary to verify that, in case of partial or total fragmentation of glass, sufficient stiffness and strength 
are maintained so to withstand at least the permanent loads as well as a fraction of the live loads. Laminated glass, 
composed by glass plies sandwiching polymeric interlayer sheets, can provide, when properly designed, a safe post-
glass breakage response. Indeed, when glass fails, the interlayer prevents sharp pieces from spreading and the 
assembly maintains a certain “consistency” that prevents detachment from fixings. The flexibility of the interlayer 
and its capability of adhesion with the shards, make laminated glass an effective material for very special purposes, 
i.e., to mitigate the effects of blast loading on buildings or to construct structural diaphragms able to counterbalance 
the earthquake-induced accelerations. 

One of the most relevant aspects that influence the post-breakage response is the partial delamination between glass 
and polymer, which depends upon the glass-interlayer adhesion properties and allows for the polymer stretching 
(Delincé et al. 2008). Other important factors are the interlayer stiffness, ruled by polymer type, temperature and 
characteristic duration of the action, and the size and shape of the glass fragments. The latter depends upon the thermal 
treatments made to increase the bending strength of glass. In thermally-toughened glass, the breakage pattern is 
characterized by small blunt particles, whereas in heat-strengthened glass, for which the cooling is more gradual, the 
shards are larger. In both cases, fractures develop almost instantaneously in the whole element because of the sudden 
conversion of elastic strain energy into fracture energy. Remarkably, the adherence with the glass fragments produces 
the tension stiffening of the polymeric film, which otherwise would present negligible mechanical performance. 

Many theoretical, numerical and experimental studies have regarded the pre-glass breakage response of laminated 
glass, but the modelling of the post-breakage response has received limited attention. Experimental activities have 
been conducted on broken laminated glass under in-plane and out-of-plane bending. The results are usually interpreted 
with numerical simulations that model the single glass shard, but analyses of this type are usually computationally 
difficult due to the high number of glass fragments. A simple analytical approach for the tensile response of broken 
laminated glass, innovative to our knowledge, has been very recently presented in (Galuppi and Royer Carfagni 2016). 
Here, this approach is revisited so to investigate in detail the influence of various aspects, such as the thermal treatment 
performed on glass (determining the size of glass fragments), the glass-interlayer delamination length, and the 
interlayer thickness.  

The theoretical results are used to predict, in more general terms, the response of cracked laminated glass under in-
plane and out-of-plane bending. In particular, as discussed in (Galuppi and Royer Carfagni 2018) the response under 
in-plane bending may be modelled as the bending of a bimodulus element, with the Young’s modulus of glass in 
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compression, and the effective modulus of the interlayer in tension. The out-of-plane bending presents somehow an 
analogy with the mechanics of reinforced concrete: the bending moment is equilibrated by the compression stress, due 
to contact of the glass shards, and the tensile stress in the polymeric interlayer, which plays the role of reinforcement, 
tension-stiffened by the adhesion with the glass shards. Starting from the theoretical approach, we propose compact 
formulas to calculate the effective bending stiffness of laminated glass element in the post-breakage phase. In the 
aforementioned analysis, a key point is the correct evaluation of the tension stiffening in the interlayer due to the 
adhesion with the glass shards; otherwise, the polymer alone would be too compliant to provide any noteworthy 
contribution for the stiffness of the assembly. 

2. Tensile response of broken laminated glass 

In the post-glass-breakage phase, thermally-toughened and heat-strengthened laminated glass are characterized by a 
mosaic texture of the shards, approximatively uniform, with fragments of comparable size, depending upon the type 
of thermal treatment. Hence, with the aim of defining an effective stiffness of the damaged element, it can be regarded 
as a composite formed by the interlayer to which randomly distributed glass shards remain adherent, with 
homogeneously distributed fragmentation. Partial delamination usually occurs at the glass-polymer interface. Since 
the Young’s modulus of glass is 3 or 4 orders of magnitude higher than that of the interlayer, the glass fragments can 
be considered rigid with respect to the interlayer, and therefore subjected to null strain. Hence, one can consider the 
isolated interlayer for which a uniform tensile stress, assumed as the reference state, is perturbed by the contact with 
the rigid fragments.  

2.1. The model problem 

The considered reference geometry is a broken laminated glass element composed by two equally-thick glass plies, 
bonded by a polymeric interlayer of thickness t and Young’s modulus Ep, subjected to uniaxial tensile loading in x 
direction, as shown in Fig. 1a. The glass plies are damaged by symmetric cracks approximatively parallel to the (y, z) 
and (x, z) planes. This is a simplified view of the real problem, because the fragment shapes are in general random 
and the cracks are unlike to be symmetric on the two plies. However, several studies (see, for example, (Biolzi et al. 
2016)) have confirmed that the stiffness recorded in the symmetric-crack case should be considered a lower bound 
value for the effective stiffness of a cracked element. 

Clearly, the cracks parallel to the direction of loading (i.e., parallel to the (x, z) plane in Fig. 1a) are subject to null or 
negative opening stress (due to the lateral contraction of the inner layer), so that they do not influence the tensile 
response. Therefore, one can consider only the effects of the cracks orthogonal to the tensile stress and the problem 
may be reduced to a plane problem in the (x, z) reference system, i.e., either plane stress or plane strain conditions.   

 

 
 

a) b) 
 

Fig. 1 a) Schematic view of a cracked laminated glass element under uniaxial tension and b) elementary portion comprised between two crack 
planes. 

As shown in Fig. 1b, the representative element is the region comprised between two consecutive cracks, of length 
2a. The same figure also evidences that each glass fragment is assumed to be symmetrically detached from the 
interlayer at its ends for a length λ and, hence, remains bonded in the central zone of length 2b=2(a-λ). 

2.2. Stress state in the interlayer 

Since the strain in the glass plies is supposed to be negligible, the tensile response is governed by the deformation of 
the interlayer only. The reference state for the interlayer is the one in which it is uniformly stressed along x under the 
uniaxial tensile stress σ . The actual stress can be written as the sum of the reference state and of a perturbation stress 
field due to the tension stiffening of the shards. Under this assumption, a simple equilibrated elastic solution, 
determined by means of energy minimization methods, is proposed in (Galuppi and Royer Carfagni 2016). In such a 
solution, the stress is constant in-the-thickness of the interlayer, but can vary along x.  
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The obtained generalized plane stress distribution is characterized by a stress diffusion phenomenon, from the external 
detached zones towards the bonded region. In particular, the mean axial stress in the interlayer turns out to be constant 
in the external detached zones, where the presence of the glass fragments does not lead to stress perturbations, and 
decreases starting from the boundary and going to the center of the bonded region, with a slope that depends upon the 
interlayer thickness and its Poisson’s ratio. This result, which is due to the fact that the stress is transferred to the glass 
shards through the bonding, has been discussed in detail in (Galuppi and Royer Carfagni 2016). The stress diffusion 
phenomenon has been confirmed by FEM analyses, as qualitatively shown by Fig. 2.  

 
 
Fig. 2 Qualitative comparison between the numerically evaluated axial stress (with evidence of the stress diffusion inside the bonded zone) 

and the analytically evaluated mean axial stress. 
 

As it is evident in the magnified detail in Fig. 2, the axial stress is not constant in the thickness of the interlayer, and 
it tends tend to flow also through the internal fibers of the interlayer. However, the approximate solution here proposed 
accurately captures the average stress at each cross section of the interlayer, as demonstrated by comparison with 
numerical results recorded in (Galuppi and Royer Carfagni 2016). 

2.3. Effective tensile stiffness 

Starting from the so obtained stress field, energy theorems of elasticity theory are used in (Galuppi and Royer Carfagni 
2016) to find a lower bound on the effective stiffness of the cracked laminate under tension, defined as the stiffness of 
a homogeneous body presenting the same tensile properties in terms of elongation. A lower bound for the effective 
Young’s modulus Eeq of the cracked laminated glass element may be written in the form  

( , , ) ,eq p
aE E a t≥ χ λλ

                                                                   (1) 

where Ep represents the modulus of the interlayer only, and ( , , )a tχ λ  is a non-dimensional quantity, depending on 
the detachment length, the glass fragment size and the interlayer thickness. This quantity takes different expressions 
for plane stress and plane stress conditions. Accurate charts for the determination of such a coefficient are proposed 
in (Galuppi and Royer Carfagni 2018). In the case of laminated glass element with different characteristic fragment 
sizes in different regions (e.g., depending upon the distance from the crack origin), the effective moduli of the different 
regions may be evaluated via eq. (1), with different values of a. In (Galuppi and Royer Carfagni 2017), this approach 
has been extended to the study of the response of broken laminated glass plates under equi-biaxial state of stress. 

Remarkably, to predict the gross load-displacement response of the cracked laminated glass elements, the progressive 
detachment of the interlayer from the glass shards, and the consequent redistribution of the axial stress, should be 
considered. Furthermore, the elastic modulus of the viscoelastic polymeric interlayer is strongly affected by the load 
duration and the temperature. Consequently, the response of the cracked laminated glass beam, and consequently its 
effective tensile modulus Eeq, is highly time-dependent. 

It should be mentioned that, to our knowledge, the only other formulation available in the literature (Bennison and 
Stelzer, 2009) defines the equivalent Young’s modulus of cracked laminated glass in the form 

.eq p
aE E= λ

                                                                                 (2) 

 
The underlaying hypothesis of this approach is that the stress and strain state are uniaxial, and that only the detached 
zones of the inner layer contribute to the elongation of the element, while the contact with the rigid fragments prevents 
the straining in the bonded zones. In other words, it completely neglects the stress diffusion phenomenon. 
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3. Parametric analyses and comparison with numerical results 

The simple approach of (2) neglects the influence on the effective stiffness of the glass shards and of the interlayer 
thickness, and provides values of Eeq correlated only with the percentage of detached zone ξ=λ/a. In the sequel, the 
influence of these factors will be evaluated in detail, and the results obtained with the expression (1) for the proposed 
model will be compared with those from numerical analyses performed with the code Abaqus, with reference to a 
cracked composite element like that of Fig. 1b. In the numerical experiments, the equivalent axial modulus is evaluated 
as the ratio between the applied axial stress and the average strain. The case of plane strain condition, representative 
of the cracked laminated panel shown in Fig. 1, where displacement in the z direction are prevented by the presence 
of the adjacent glass fragments, will be considered. 

3.1. Influence of the glass fragment length 

Let us consider, first, the influence of the glass fragment length on the residual stiffness of laminated glass after 
breakage. Fig. 3 shows the comparison of the results in terms of effective elastic modulus Eeq, normalized by the 
interlayer modulus Ep. The values obtained with the proposed model, via eq. (1), are juxtaposed with those from 
numerical simulations as a function of ξ = λ/a, for different values of the fragment size (ranging from 10 mm to 200 
mm) and interlayer thickness t = 0.76 mm.  Observe that by adopting the elementary model of eq. (2), one obtains a 
straight line, also indicated in the graphs, because Eeq would be independent of the glass fragment length, but only 
related with the percentage ξ of detachment. Remarkably, the elementary approach is not on the safe side. On the 
other hand, our proposed model provides quite an accurate lower bound for the effective Young’s modulus: for 
standard geometric parameters, the mean error is lower than 4%.  

 

Fig. 3  Ratio Eeq / Ep, as a function of the fragment length 2a, for interlayer thickness 0.76 mm and for different values of ξ = λ/a. 
Comparison between analytical and numerical results. 

 
Observe that the effective stiffness of cracked laminated glass is considerably higher than that of the isolated interlayer. 
This is due to the stiffening effect of the external rigid fragments, which provokes the stress diffusion phenomenon 
described in the previous Section. For a given value of ξ, the effective modulus is lower for low values of a, because 
the stress diffusion phenomena become more relevant for small sizes of the glass-interlayer bonded region. For high 
values of the glass fragment length and for low values of ξ (i.e., for long bonded region), the effect of the stress 
diffusion phenomenon becomes negligible and the effective Young’s modulus tends to be that of eq. (2). Furthermore, 
it may be observed that the analytic prediction for the lower bound of Eeq results to be higher than the numerical 
calculation for high values of ξ and low values of a. This is because, when the bond length is very small, the two 
stress-diffusion zones tend to merge, so that part of the axial load directly flows through the interlayer, with no need 
of being transferred to the adherent glass fragments. The proposed analytical model, based upon the constant-in-the-
thickness axial stress approximation, cannot correctly capture this effect, but apart from this, it seems to be very 
reliable. 

Fig. 4 is the analogue of Fig. 3, for higher interlayer thickness (1.52 mm). It may be observed that, even if the 
qualitative behavior is very similar to that recorded previously, the effective stiffness, for given values of a and ξ, is 
lower in the latter case. 
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Fig. 4  Ratio Eeq / Ep, as a function of the fragment length 2a, for interlayer thickness of 1.52 mm, for different values of ξ = λ/a. 
Comparison between analytical and numerical results. 

This is because, for high values of interlayer thickness, the stress-diffusion phenomenon becomes more relevant since 
the stress tends to flow through the central fibers. Consequently, the dependence of the effective modulus on the glass 
fragment length is more marked. This fact will be discussed more in detail in Sect. 3.3. 

3.2. Influence of the delamination length 

Fig. 5 and Fig. 6 show the effective elastic modulus Eeq normalized by the interlayer elastic modulus Ep as a function 
of the percentage of detached interlayer, for different values of the fragment length and for interlayer thickness of 0.76 
mm and 1.52 mm, respectively.  

 
Fig. 5  Ratio Eeq / Ep, as a function of the percentage of detached interlayer ξ = λ/a, for different values of the fragment length 2a and for 

interlayer thickness of 0.76 mm. Comparison between analytical and numerical results. 

These graphs confirm the strong influence of the local delamination on the post-critical response of laminated glass. 
For high values of ξ (i.e., for almost complete debonding), part of the axial load directly flows through the interlayer 
and, consequently, the effective stiffness tends to that of the interlayer only ( / 1eq pE E → ). Moreover, notice that the 
influence of the detached zone length is higher when glass is fragmented into small pieces, i.e., for low values of a.  
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Fig. 6  Ratio Eeq / Ep, as a function of the percentage of detached interlayer ξ = λ/a, for different values of the fragment length 2a and for 
interlayer thickness of 1.52 mm. Comparison between analytical and numerical results. 

By comparing Fig. 5 and Fig. 6, it is confirmed that, for given value of fragment size and debonding length, the stress 
diffusion phenomena are more relevant for high values of interlayer thickness, and, hence, the effective stiffness is 
lower in this case.   

3.3. Influence of the interlayer thickness 

Fig. 7 shows the effective modulus Eeq, normalized by the interlayer modulus Ep, as a function of the interlayer 
thickness, for different values of the glass fragment length and of the delamination length. Analytic (eq. (1)) and 
numerical results are here compared. Since polymeric sheets are usually provided by the manufacturer with thickness 
of 0.38 mm, 0.76 mm or 1.52 mm, that can also be stacked to form thicker interlayers, here interlayer thicknesses 
from 0.38 mm to 3.04 mm are considered. 

The obtained results confirm the influence of the interlayer thickness on the post-critical response of laminated glass, 
in particular for glass fragmented in “small” shards. More precisely, the higher is the interlayer thickness, the more 
pronounced are the stress diffusion phenomena and the “flowing” of stresses through the inner region of the interlayer, 
and, consequently, the lower is the correspondent effective stiffness. 
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Fig. 7  Ratio Eeq / Ep, as a function of the interlayer thickness, for different values of percentage of detached interlayer ξ = λ/a of the 
fragment length 2a. 

Notice that the analytical estimations loose accuracy for high values of t and low values of a (see highlighted region 
in Fig. 7), i.e., whenever the interlayer thickness is of the order of its length. In this case, the constant-in-the-thickness 
axial stress approximation is not precise, and the analytical model cannot provide an accurate lower bound for the 
effective stiffness. 

4. Bending response of broken laminated glass 

The approach described in the previous Sections may be extended to evaluate the in-plane and out-of-plane response 
of completely cracked laminated glass under the most general loading conditions (Galuppi and Royer Carfagni 2018). 
For in-plane bending, the state of stress is composed by compression, due to direct contact of the shards, and tension, 
transmitted by the polymer tension-stiffened by the shards. For out-of-plane bending, we follow the description in 
(Kott and Vogel 2004), according to which three distinct stages can be recognized while increasing the bending load: 
I) both glass plies are sound, the interlayer constrains the shear sliding of the glass plies and the laminate glass element 
behaves as a sandwich structure (Galuppi and Royer Carfagni 2012); II) one of the glass plies breaks and the load is 
carried by the ply remaining sound; III) both the glass plies break, but the element maintains a residual post-breakage 
load-bearing capacity and stiffness because the bending moment is balanced by the compression stresses transferred 
between the glass shards and the tensile stresses sustained by the interlayer (Delincé et al. 2008). 

In general, the post-glass-breakage response is strongly influenced by the interlayer material. As discussed in the 
sequel, Ionoplastic interlayers, stiffer and less sensitive to viscosity than PVB, can strongly improve the post-glass 
breakage performance. 

4.1. Response under in-plane bending 

The response of a laminated glass panel under in-plane bending, in case of complete fragmentation of both the glass 
plies, may be modelled by considering that the glass fragments can transfer compressive stress by direct contact. On 
the other hand, the tensile stresses are carried by the interlayer, stiffened by the adherent glass fragments, whose 
effective modulus may be estimated by means of eq. (1). The membrane (in-plane) bending of an element of width w 
composed by two glass plies of thickness h and an interlayer of thickness t is thus regarded as the bending of a 
bimodulus material, having tensile stiffness tEeq and compressive stiffness 2hEG, where EG denotes the compressive 
Young’s modulus of sound glass, as qualitatively shown in Fig. 8. 
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Fig. 8  Qualitative plot of the axial load – axial deformation relation of cracked laminated glass. 

As discussed in (Galuppi and Royer Carfagni 2018), since the axial stress distribution is bilinear (see Fig. 9), the 
effective in-plane bending stiffness reads 

3
3 3

;
2( ) (1 ) (2 ) ,

3PB m G eq
hwEI E k E k t h = + −                                                 (3) 

where the nondimensional parameter k, determining the position of the neutral axis as shown by Fig. 9, may be 
evaluated from the axial equilibrium of the element. For standard material and geometric parameters, k is of the order 
of 3% of the beam height. Consequently, the contribution of the compressive zone is quite low and the effective post-
breakage bending stiffness is very low if compared to the pre-breakage one. 

 
Fig. 9  Cracked laminated glass beam under in-plane bending: a) schematics and b) qualitative distribution of the axial strain and stress. 

Comparisons with experimental results recorded in (Galuppi and Royer Carfagni 2018) have demonstrated that the 
proposed model should give a quite accurate estimation of the post-glass-breakage in-plane stiffness. 

4.2. Response under out-of-plane bending 

For what concerns the out-of-plane bending response of broken laminated glass, there is weak analogy with the 
mechanics of reinforced concrete, where the glass fragments play the role of the concrete (no-tension material), while 
the interlayer corresponds to the steel reinforcement, as schematically shown in Fig. 10. However, there is also a 
strong difference, because the polymer is much more compliant than a steel reinforcement, so that the tension 
stiffening due to the adhesion with the glass represents the most important phenomenon to consider.  

5.  

Fig. 10 Schematics of the out-of-plane bending of cracked laminated glass element, with qualitative distribution of the axial stress. 
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Since the interlayer is stiffened by the glass fragments, its tensile modulus should be assumed to be Eeq, as defined 
per eq. (1). Simple considerations based upon the analogy with a bi-material beam, supposing that the cross sections 
remain plane, allow to obtain for the post-breakage out-of-plane stiffness the expression 

( ) ( )
3 3 33

;
2( ) 1 1 ,

3PB p G eq
hw tEI E k E k kh

  = + + − − −    
                                               (4) 

where, again, k identifies the position of the neutral axis. This value that is found by requiring that the resultant of the 
axial stress is null. 

As discussed in (Galuppi and Royer Carfagni 2018), glass elements laminated with Ionoplastic interlayers present a 
noteworthy residual stiffness after glass breakage, of the order of almost 10%, while PVB interlayers provide a very 
poor performance (the ratio between post- and pre-glass breakage bending stiffness is less than 10−3). Observe that, in 
general, broken laminated glass elements remains in use for a short period of time (i.e., the time required for 
replacement), and, hence, a lifetime of the order of days may be assumed in the post-failure phase. It may be verified 
that Ionoplastic interlayers are stiff enough to maintain considerable stiffness for such a time, while elements 
laminated with standard PVB (Bennison, 2009) exhibit a sudden stiffness decay even after one hour due to viscosity. 
Comparisons with experimental results (Galuppi and Royer Carfagni 2018) have demonstrated that the proposed 
model in general provides a quite accurate estimation of the post-glass breakage bending stiffness. A proper evaluation 
of the tension stiffening of the interlayer in the post critical phases, i.e., of the effective Young’s modulus Eeq, is clearly 
at the basis for a correct evaluation of the post-critical bending response of the laminated glass element. 

6. Conclusions 

The consequences associated with the loss of stiffness and strength after glass breakage should be carefully considered 
when the function of the element is that of carrying dead loads, e.g., snow loads or people, as it is the case for roofs 
or floors. In this case, it is necessary to consider the possibility of breakage since the design stage, and to require that 
the element can withstand the design loads when one or more glass plies are broken. This is a crucial aspect in the 
fail-safe approach to the structural design of glass, as prescribed by modern Codes.  

In order to facilitate the structural calculations it is useful to define the effective mechanical properties of broken 
laminated glass elements. In (Galuppi and Royer Carfagni 2016), an innovative model for the evaluation of the post-
glass breakage tensile stiffness of laminated glass is proposed, accounting for the glass-interlayer local delamination 
and based upon a proper evaluation of the stress diffusion phenomena inside the bonded region. The strength of the 
proposed method consists in the possibility of accounting for the stress diffusion phenomena in simple mathematical 
terms, allowing to reach a simple but accurate estimate of the effective stiffness of the cracked laminate. Here, an 
accurate evaluation of the influence of several geometric parameters, such as the glass fragment length, the amount of 
delamination and the interlayer thickness, has been made. Comparison with numerical results confirm the accuracy of 
the proposed approach. For standard geometric parameters, the mean error is less than 4%. 

The so obtained effective tensile stiffness may be used as the basis for a proper evaluation of the bending response of 
broken laminated glass elements. The mathematical treatment for the in-plane and out-of-plane response of broken 
laminated glass elements is in analogy with the bending of a beam made of a bimodulus material and the mechanics 
of reinforced concrete. This provides compact formulae for the evaluation of the bending stiffness. In all cases, a 
proper evaluation of the tension stiffening of the interlayer in the post critical phases is the basis for a correct design 
of laminated glass elements and structures. The residual stiffness after glass breakage depends upon the interlayer 
properties, the geometry and the ratio between interlayer thickness and glass thickness. In general, lamination with 
Ionoplastic interlayers enhances the post-breakage stiffness with respect to PVB interlayers, especially if one takes 
into account the time-dependent response. In any case, the post-critical stiffness and strength are always much lower 
than those of the sound element.  
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